Comprehensive Assessment from Optimum Biodiesel Yield to Combustion Characteristics of Light Duty Diesel Engine Fueled with Palm Kernel Oil Biodiesel and Fuel Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transesterification Process
2.2. Biodiesel Production Model
2.3. Properties of PKO
2.3.1. Flash Point and Fire Point
2.3.2. Kinematic Viscosity and Density
2.3.3. Calorific Value (CV)
2.3.4. Cetane Number (CN)
2.4. Preparing Samples
2.5. Engine Combustion Setup
2.5.1. Testing Conditions
2.5.2. Error Analysis and Uncertainty
3. Results and Discussions
3.1. Optimization of Biodiesel Production
3.1.1. Effect of Different Ratios of Molar Ratio on PKO Biodiesel Yield
3.1.2. Effect of Different Catalysts on the Biodiesel Yield
3.1.3. Effect of Temperature on the Yield of Biodiesel Production
3.1.4. Linear Model Analysis
3.2. Combustion Characteristics
3.2.1. Heat Release Rate
3.2.2. Cylinder Pressure
3.3. Performance Analysis
3.3.1. Brake Thermal Efficiency (BTE)
3.3.2. Brake Specific Fuel Consumption
3.4. Emission Characteristics
3.4.1. Nitrogen Oxides (NOx)
3.4.2. Carbon Monoxide (CO)
3.4.3. Hydrocarbon (HC)
3.4.4. Smoke Opacity
3.5. Energy Analysis
4. Conclusions
- The B20DEE blend attained 4.7% higher peak HRR than the B20 fuel blend, due to the better atomization and DEE.
- The B20BHT and B20 + DEE fuel blends showed higher BTE, by 6.64% and 5.4%, compared to B20, respectively.
- BSFC were decreased by 7.69% and 3.84% with the use of BHT and DEE additives, compared to the B20 fuel blend.
- NOx emissions were decreased by 19.4% and 14.6% in the presence of BHT and DEE, respectively, compared to diesel fuel, due to higher latent heat evaporation and lower premixed combustion phase.
- B20 showed a decrease in CO emission of 31.8%, compared to diesel fuel. However, adding DEE improved CO emissions by 39.2%, compared to diesel fuel.
- HC emission was increased by 13.6% and 38%, for B20BHT and B20DEE respectively, compared to the B20 fuel blend.
- B20DEE decreased smoke emissions by 5.4% and 11.5%, respectively, compared to B20 and diesel fuel, because of the higher oxygen content in the molecule structure of DEE.
- B20BHT combustion decreased smoke emissions by 9.5%, compared to the B20 fuel blend, because of the antioxidant’s influence on reducing ignition delay.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ATDC | after top dead center |
B0 | 100% diesel fuel |
B100 | 100% palm kernel oil biodiesel |
B20 | 20% palm kernel oil biodiesel + 80% diesel fuel |
B20 + BHT | B20 + butylated hydroxyltoluene |
B20 + DEE | B20 + diethyl ether |
B30 | 30% palm kernel oil biodiesel + 70% Diesel |
B40 | 40% palm kernel oil biodiesel + 60% Diesel |
BHT | butylated hydroxyltoluene |
BP | brake power |
BSFC | brake specific fuel consumption |
BTDC | before top dead center |
BTE | brake thermal efficiency |
CI | Compression ignition |
CN | cetane number |
CO | carbon monoxide |
CO2 | carbon dioxide |
DC | diffusion combustion |
DEE | diethyl ether |
FFA | free fatty acid |
HHR | heat release rate |
KOH | potassium hydroxide |
NaOH | sodium hydroxide |
NOx | nitrogen oxides |
PC | premixed combustion |
PKO | palm kernel oil |
PO | palm oil |
SOC | start of combustion |
UHC | unburned hydrocarbon |
WCO | waste cooking oil |
References
- Asokan, M.; Kamesh, S.; Khan, W. Performance, combustion and emission characteristics of diesel engine fuelled with papaya and watermelon seed oil bio-diesel/diesel blends. Energy 2018, 145, 238–245. [Google Scholar] [CrossRef]
- Gharehghani, A.; Asiaei, S.; Khalife, E.; Najafi, B.; Tabatabaei, M. Simultaneous reduction of CO and NOx emissions as well as fuel consumption by using water and nano particles in Diesel–Biodiesel blend. J. Clean. Prod. 2019, 210, 1164–1170. [Google Scholar] [CrossRef]
- Kayode, B.; Hart, A. An overview of transesterification methods for producing biodiesel from waste vegetable oils. Biofuels 2019, 10, 419–437. [Google Scholar] [CrossRef]
- Janaun, J.; Ellis, N. Perspectives on biodiesel as a sustainable fuel. Renew. Sustain. Energy Rev. 2010, 14, 1312–1320. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Tabatabaei, M.; Aghbashlo, M.; Khanali, M.; Demirbas, A. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers. Manag. 2018, 174, 579–614. [Google Scholar] [CrossRef]
- Momin, M.; Deka, D.C. Fuel property of biodiesel and petrodiesel mix: Experiment with biodiesel from yellow oleander seed oil. Biofuels 2015, 6, 269–272. [Google Scholar] [CrossRef]
- Rajaeifar, M.A.; Tabatabaei, M.; Aghbashlo, M.; Nizami, A.-S.; Heidrich, O. Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies. Renew. Sustain. Energy Rev. 2019, 111, 276–292. [Google Scholar] [CrossRef]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Bello, E.; Oguntuase, B.; Osasona, A.; Mohammed, T. Characterization and engine testing of palm kernel oil biodiesel. Eur. J. Eng. Technol. 2015, 3, 3. [Google Scholar]
- Gui, M.M.; Lee, K.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Alamu, O.; Akintola, T.; Enweremadu, C.; Adeleke, A. Characterization of palm-kernel oil biodiesel produced through NaOH-catalysed transesterification process. Sci. Res. Essay 2008, 3, 308–311. [Google Scholar]
- Aboelazayem, O.; El-Gendy, N.S.; Abdel-Rehim, A.A.; Ashour, F.; Sadek, M.A. Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis. Energy 2018, 157, 843–852. [Google Scholar] [CrossRef]
- Silitonga, A.; Masjuki, H.; Ong, H.C.; Yusaf, T.; Kusumo, F.; Mahlia, T. Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study. Ind. Crop. Prod. 2016, 85, 274–286. [Google Scholar] [CrossRef]
- Ayetor, G.; Sunnu, A.K.; Kesse, M. Engine performance and emissions of fuel produced from palm kernel oil. Biofuels 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Nwakaire, J.; Obi, O.; Ohagwu, C.; Anyadike, C.; Ugwu, I.; Ifoh, J. Engine performance of blends of palm kernel oil biodiesel under varying speed at constant torque. Niger. J. Technol. 2020, 39, 761–766. [Google Scholar] [CrossRef]
- Prabu, S.S.; Asokan, M.; Roy, R.; Francis, S.; Sreelekh, M. Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio-diesel/diesel blends with additives. Energy 2017, 122, 638–648. [Google Scholar] [CrossRef]
- Ryu, K. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Bioresour. Technol. 2010, 101, S78–S82. [Google Scholar] [CrossRef] [PubMed]
- Ndayishimiye, P.; Tazerout, M. Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics. Energy 2011, 36, 1790–1796. [Google Scholar] [CrossRef]
- Imdadul, H.; Masjuki, H.; Kalam, M.; Zulkifli, N.; Alabdulkarem, A.; Rashed, M.; Teoh, Y.; How, H. Higher alcohol–biodiesel–diesel blends: An approach for improving the performance, emission, and combustion of a light-duty diesel engine. Energy Convers. Manag. 2016, 111, 174–185. [Google Scholar] [CrossRef]
- Qi, D.; Chen, H.; Geng, L.; Bian, Y. Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine. Renew. Energy 2011, 36, 1252–1258. [Google Scholar] [CrossRef]
- Imtenan, S.; Masjuki, H.H.; Varman, M.; Fattah, I.R.; Sajjad, H.; Arbab, M. Effect of n-butanol and diethyl ether as oxygenated additives on combustion–emission-performance characteristics of a multiple cylinder diesel engine fuelled with diesel–jatropha biodiesel blend. Energy Convers. Manag. 2015, 94, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Huaping, Z.; Zongbin, W.; Yuanxiong, C.; Zhang, P.; Shijie, D.; Xiaohua, L.; Zongqiang, M. Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chin. J. Catal. 2006, 27, 391–396. [Google Scholar]
- Chitsaz, H.; Omidkhah, M.; Ghobadian, B.; Ardjmand, M. Optimization of hydrodynamic cavitation process of biodiesel production by response surface methodology. J. Environ. Chem. Eng. 2018, 6, 2262–2268. [Google Scholar] [CrossRef]
- Holman, J. Experimental Methods for Engineers, 7th ed.; Tata McGraw Hill: New Delhi, India, 2004. [Google Scholar]
- Kudre, T.G.; Bhaskar, N.; Sakhare, P.Z. Optimization and characterization of biodiesel production from rohu (Labeo rohita) processing waste. Renew. Energy 2017, 113, 1408–1418. [Google Scholar] [CrossRef]
- Prabu, S.S.; Asokan, M.; Prathiba, S.; Ahmed, S.; Puthean, G. Effect of additives on performance, combustion and emission behavior of preheated palm oil/diesel blends in DI diesel engine. Renew. Energy 2018, 122, 196–205. [Google Scholar] [CrossRef]
- Imtenan, S.; Masjuki, H.; Varman, M.; Kalam, M.; Arbab, M.; Sajjad, H.; Ashrafur Rahman, S. Impact of oxygenated additives to palm and jatropha biodiesel blends in the context of performance and emissions characteristics of a light-duty diesel engine. Energy Convers. Manag. 2014, 83, 149–158. [Google Scholar] [CrossRef]
- Khalife, E.; Tabatabaei, M.; Demirbas, A.; Aghbashlo, M. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog. Energy Combust. Sci. 2017, 59, 32–78. [Google Scholar] [CrossRef]
- Soriano, J.; García-Contreras, R.; Gómez, A.; Mata, C. Comparative study of the effect of a new renewable paraffinic fuel on the combustion process of a light-duty diesel engine. Energy 2019, 189, 116337. [Google Scholar] [CrossRef]
- Elkelawy, M.; Etaiw, S.E.-d.H.; Bastawissi, H.A.-E.; Ayad, M.I.; Radwan, A.M.; Dawood, M.M. Diesel/biodiesel/silver thiocyanate nanoparticles/hydrogen peroxide blends as new fuel for enhancement of performance, combustion, and Emission characteristics of a diesel engine. Energy 2021, 216, 119284. [Google Scholar] [CrossRef]
- Asokan, M.; Vijayan, R.; Prabu, S.S.; Venkatesan, N. Experimental studies on the combustion characteristics and performance of a DI diesel engine using kapok oil methyl ester/diesel blends. Int. J. Oil Gas Coal Technol. 2016, 12, 105–119. [Google Scholar] [CrossRef]
- Khalife, E.; Tabatabaei, M.; Najafi, B.; Mirsalim, S.M.; Gharehghani, A.; Mohammadi, P.; Aghbashlo, M.; Ghaffari, A.; Khounani, Z.; Roodbar Shojaei, T.; et al. A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–biodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part I—Experimental analysis. Fuel 2017, 201. [Google Scholar] [CrossRef]
- Erdoğan, S.; Balki, M.K.; Aydın, S.; Sayın, C. Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator. Energy 2020, 207, 118300. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, Z.; Miao, H.; Di, Y.; Jiang, D.; Zeng, K.; Liu, B.; Wang, X. Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends. Fuel 2008, 87, 2691–2697. [Google Scholar] [CrossRef]
- Attia, A.M.; Hassaneen, A.E. Influence of diesel fuel blended with biodiesel produced from waste cooking oil on diesel engine performance. Fuel 2016, 167, 316–328. [Google Scholar] [CrossRef]
- Tompkins, B.; Song, H.; Bittle, J.; Jacobs, T. Efficiency considerations for the use of blended biofuel in diesel engines. Appl. Energy 2012, 98, 209–218. [Google Scholar] [CrossRef]
- Asokan, M.; Prabu, S.S.; Akhil, V.S.; Bhuvan, P.S.; Reddy, Y.B. Performance and emission behaviour of diesel and blends of watermelon seed oil biodiesel in direct injection diesel engine. Mater. Today Proc. 2021, 45, 3274–3278. [Google Scholar] [CrossRef]
- Gumus, M.; Sayin, C.; Canakci, M. The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel 2012, 95, 486–494. [Google Scholar] [CrossRef]
- Kumar, M.V.; Babu, A.V.; Kumar, P.R. The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine. Alex. Eng. J. 2018, 57, 509–516. [Google Scholar] [CrossRef]
- Kumar, A.N.; Kishore, P.; Raju, K.B.; Nanthagopal, K.; Ashok, B. Experimental study on engine parameters variation in CRDI engine fuelled with palm biodiesel. Fuel 2020, 276, 118076. [Google Scholar] [CrossRef]
- Pidol, L.; Lecointe, B.; Starck, L.; Jeuland, N. Ethanol–biodiesel–diesel fuel blends: Performances and emissions in conventional diesel and advanced low temperature combustions. Fuel 2012, 93, 329–338. [Google Scholar] [CrossRef]
- Varatharajan, K.; Cheralathan, M.; Velraj, R. Mitigation of NOx emissions from a jatropha biodiesel fuelled DI diesel engine using antioxidant additives. Fuel 2011, 90, 2721–2725. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, NY, USA, 1988; Volume 930. [Google Scholar]
- Ozsezen, A.N.; Canakci, M. The emission analysis of an IDI diesel engine fueled with methyl ester of waste frying palm oil and its blends. Biomass Bioenergy 2010, 34, 1870–1878. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Tabatabaei, M.; Aghbashlo, M.; Khanali, M.; Khalife, E.; Shojaei, T.R.; Mohammadi, P. Consolidating emission indices of a diesel engine powered by carbon nanoparticle-doped diesel/biodiesel emulsion fuels using life cycle assessment framework. Fuel 2020, 267, 117296. [Google Scholar] [CrossRef]
- Sayin, C.; Canakci, M. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine. Energy Convers. Manag. 2009, 50, 203–213. [Google Scholar] [CrossRef]
- Ajav, E.; Singh, B.; Bhattacharya, T. Experimental study of some performance parameters of a constant speed stationary diesel engine using ethanol–diesel blends as fuel. Biomass Bioenergy 1999, 17, 357–365. [Google Scholar] [CrossRef]
- Asokan, M.; Prabu, S.S.; Bade, P.K.K.; Nekkanti, V.M.; Gutta, S.S.G. Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine. Energy 2019, 173, 883–892. [Google Scholar] [CrossRef]
- Asokan, M.; Vijayan, R. A review on performance, emission and combustion characteristics of a diesel engine fuelled with various vegetable oil. Indian J. Chem. Technol. 2018, 25, 225–234. [Google Scholar]
- Monsalve-Serrano, J.; Belgiorno, G.; Di Blasio, G.; Guzmán-Mendoza, M. 1D simulation and experimental analysis on the effects of the injection parameters in methane–diesel dual-fuel combustion. Energies 2020, 13, 3734. [Google Scholar] [CrossRef]
- Sayin Kul, B.; Kahraman, A. Energy and exergy analyses of a diesel engine fuelled with biodiesel-diesel blends containing 5% bioethanol. Entropy 2016, 18, 387. [Google Scholar] [CrossRef]
- Belgiorno, G.; Dimitrakopoulos, N.; Di Blasio, G.; Beatrice, C.; Tuner, M.; Tunestal, P. Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine. SAE Tech. Paper 2017. [Google Scholar] [CrossRef]
Variables | Symbol | Range and Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Temperature (°C) | T | 50 | 55 | 60 |
Alcohol to molar ratio | MR | 3:1 | 6:1 | 9:1 |
Catalyst | C | KOH | NaOH |
Properties | Standard Values | B100 | B20 | B30 | B40 | DIESEL | Testing Procedure |
---|---|---|---|---|---|---|---|
Density, 20 °C (kg/m3) | 680–970 | 844 | 832 | 834 | 836 | 830 | ASTM D1298 |
Kinematic viscosity, 40 °C (mm2/s) | 1.9–6 | 4.2 | 3.12 | 3.28 | 3.39 | 2.75 | ASTM D445 |
Flash point (°C) | 60–190 °C | 170 | 84 | 95 | 105 | 62 | ASTM D93 |
Fire point (°C) | - | 172 | 92 | 101 | 112 | 70 | ASTM D93 |
Calorific value (MJ/kg) | - | 38.2 | 42.68 | 42.12 | 41.56 | 43.8 | ASTM D240 |
Cetane number (CN) | >40 | 52 | - | - | - | 53 | ASTM D613 |
Catalyst | Temperature (°C) | Methanol Ratio | Yield (Experimental) (%) | Yield (Model) (%) |
---|---|---|---|---|
KOH | 50 | 3:1 | 82.3215 | 79.6506 |
6:1 | 85.6495 | 86.3099 | ||
9:1 | 84.4795 | 86.0788 | ||
55 | 3:1 | 83.4956 | 81.3492 | |
6:1 | 86.6935 | 88.0085 | ||
9:1 | 85.7155 | 87.7774 | ||
60 | 3:1 | 82.6175 | 80.0396 | |
6:1 | 86.0165 | 86.6989 | ||
9:1 | 85.3915 | 86.4678 | ||
NaOH | 50 | 3:1 | 62.3735 | 65.0131 |
6:1 | 72.6465 | 71.6724 | ||
9:1 | 72.6955 | 71.4413 | ||
55 | 3:1 | 64.4395 | 66.7116 | |
6:1 | 75.2135 | 73.3710 | ||
9:1 | 74.9999 | 73.1399 | ||
60 | 3:1 | 62.9185 | 65.4021 | |
6:1 | 72.1025 | 72.0614 | ||
9:1 | 73.4535 | 71.8303 |
Make | Kirloskar (Direct Injection, Water Cooled, 1500 rpm) |
---|---|
Model | TAF 1 (5.2 kW power) |
Ratio of compression | 17.5:1 |
Bore × stroke (mm) | 87.5 × 110 mm |
Swept volume | 661 cm3 |
Start of injection and pressure | 24° BTDC and 21 MPa |
Connecting rod length | 234 mm |
Instrument | Percentage Uncertainties | Measuring Range | Accuracy | |
---|---|---|---|---|
AVL 3066A02 crank angle encoder | ±0.3 | ±1 | ||
AVL pressure transducer GH12D | ±0.01 | 0–250 bar | ±0.01 bar | |
AVL DI GAS 444 N (five gas analyzer) | NOx | ±0.5 | 0–5000 ppm vol | 1 ppm vol |
O2 | ±0.35 | 0–25% vol | 0.01% vol | |
CO | ±0.02 | 0–15% vol | 0.0001 vol | |
HC | ±4 ppm | 0–30,000 ppm vol | 1 ppm/10 ppm | |
CO2 | ±0.2 | 0–20% vol | 0.1% vol | |
AVL 437C smoke meter | K-2 thermocouple | ±0.3 | (0–1250 °C) | ±1 °C |
Smoke intensity | ±1.1 | 0–100% | ±1% | |
U-tube manometer | ±1.5 | ±1 mm | ||
Digital stopwatch | ±0.3 | ±0.2 s | ||
Burette | ±1.5 | 1–30 cc | ±0.2 cc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabapathy, S.P.; Ammasi, A.M.; Khalife, E.; Kaveh, M.; Szymanek, M.; Kuruvakkattu Reghu, G.; Sabapathy, P. Comprehensive Assessment from Optimum Biodiesel Yield to Combustion Characteristics of Light Duty Diesel Engine Fueled with Palm Kernel Oil Biodiesel and Fuel Additives. Materials 2021, 14, 4274. https://doi.org/10.3390/ma14154274
Sabapathy SP, Ammasi AM, Khalife E, Kaveh M, Szymanek M, Kuruvakkattu Reghu G, Sabapathy P. Comprehensive Assessment from Optimum Biodiesel Yield to Combustion Characteristics of Light Duty Diesel Engine Fueled with Palm Kernel Oil Biodiesel and Fuel Additives. Materials. 2021; 14(15):4274. https://doi.org/10.3390/ma14154274
Chicago/Turabian StyleSabapathy, Senthur Prabu, Asokan Morappur Ammasi, Esmail Khalife, Mohammad Kaveh, Mariusz Szymanek, Gokul Kuruvakkattu Reghu, and Prathiba Sabapathy. 2021. "Comprehensive Assessment from Optimum Biodiesel Yield to Combustion Characteristics of Light Duty Diesel Engine Fueled with Palm Kernel Oil Biodiesel and Fuel Additives" Materials 14, no. 15: 4274. https://doi.org/10.3390/ma14154274
APA StyleSabapathy, S. P., Ammasi, A. M., Khalife, E., Kaveh, M., Szymanek, M., Kuruvakkattu Reghu, G., & Sabapathy, P. (2021). Comprehensive Assessment from Optimum Biodiesel Yield to Combustion Characteristics of Light Duty Diesel Engine Fueled with Palm Kernel Oil Biodiesel and Fuel Additives. Materials, 14(15), 4274. https://doi.org/10.3390/ma14154274