Developments towards a Multiscale Meshless Rolling Simulation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Macro Scale Solution
2.2. Micro Scale Solution
2.2.1. Critical Strain
2.2.2. Dynamic Recrystallization
2.2.3. Meta-Dynamic Recrystallization
2.2.4. Static Recrystallization
2.2.5. Grain Growth
2.2.6. No-Recrystallization Temperature
2.2.7. Ferrite Grain Size Prediction
2.3. Coupling of Micro and Macro Models
3. Node Positioning
3.1. Regular vs. Irregular Node Positioning
3.2. Node Repelling Algorithm
4. Numerical Results
4.1. Regular vs. Irregular Node Positioning—Slab
4.2. Regular vs. Irregular Node Distribution—Real Shape
4.3. Irregular Meshless Node Distribution vs. FEM
4.4. Rolling Schedule with Eight Rolling Stands
4.4.1. Effective Strain Results
4.4.2. Recrystallization Results at Each Pass
4.4.3. Recrystallization Results at Each Pass with Yada Model
4.4.4. Grain Size Comparisons of Different Models
4.4.5. Ferrite Grain Size for 16MnCr5
4.4.6. No Recrystallization Temperature
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
C-Mn | Low C | High C | C-Mn-V | C-Mn-Ti | C-Mn-Nb | HSLA | |||||
Critical strain | 6.82 × 10−4 | 4.76 × 10−4 | 4.9 × 10−4 | 4.9 × 10−4 | |||||||
312,000 | 66,500 | 312,000 | 300,000 | ||||||||
0.13 | 0 | 0.15 | 0.17 | ||||||||
0 | 0 | 1 | 0.3 | ||||||||
Dynamic recrystallization | 16,000 | 22,600 | 1800 | 16,000 | |||||||
−0.23 | −0.27 | −0.15 | −0.23 | ||||||||
312,000 | 267,100 | 312,000 | 300,000 | ||||||||
Meta-dynamic recrystallization | 26,000 | 1600 | 26,000 | 25,000 | |||||||
−0.23 | −0.11 | −0.23 | −0.23 | ||||||||
312,000 | 312,000 | 300,000 | 312,000 | ||||||||
Static recrystallization | 1 | 0.5 | |||||||||
−0.5 | −0.67 | ||||||||||
0.4 | 0.67 | ||||||||||
Grain growth | 7 | 10 | 4.5 | ||||||||
1.45 1027 | 2.6 1028 | 4.1 1028 | |||||||||
−400 | −437 | −435 | |||||||||
No-recrystallization temperature | 905 | ||||||||||
−0.045 | |||||||||||
−0.006 | |||||||||||
0.024 | |||||||||||
Ferrite grain size | −0.4 | 22.6 | 1.4 | ||||||||
6.37 | −57 | 0 | |||||||||
24.2 | 3 | 5 | |||||||||
−59 | 0 | 0 | |||||||||
22 | 22 | 22 |
References
- Lenard, J.G.; Pietrzyk, M.; Cser, L. Mathematical and Physical Simulation of the Properties of Hot Rolled Products, 1st ed.; Elsevier: Oxford, UK, 1999. [Google Scholar]
- Lenard, J.G. Primer on Flat Rolling, 1st ed.; Elsevier: Oxford, UK, 2007. [Google Scholar]
- Roberts, W.L. Hot Rolling of Steel, 1st ed.; Marcel Dekker Inc.: New York, NY, USA, 1983. [Google Scholar]
- Lee, Y.; Choi, S.; Kim, Y.H. Mathematical model and experimental validation of surface profile of a workpiece in round-oval-round pass sequence. J. Mater. Process. Technol. 2000, 108, 87–96. [Google Scholar] [CrossRef]
- Solod, V.; Kulagin, R.; Beygelzimer, Y. A local approach to simulating bar forming in pass rolling. J. Mater. Process. Technol. 2007, 190, 23–25. [Google Scholar] [CrossRef]
- Hanoglu, U.; Šarler, B. Multi-pass hot rolling simulation using a meshless method. Comput. Struct. 2018, 194, 1–14. [Google Scholar] [CrossRef]
- Dong, X.; Cheng, J.; Hongyang, Z.; Dongying, J.; Miaoyong, Z. A new study on the growth behavior of austenite grains during heating processes. Sci. Rep. 2017, 7, 3968–3980. [Google Scholar]
- Sellars, C.M. Modelling microstructural development during hot rolling. Mater. Sci. Technol. 1990, 6, 1072–1081. [Google Scholar] [CrossRef]
- Goh, C.H.; Dachowicz, A.P.; Allen, J.K.; Mistree, F. Integrated Computational Materials Engineering (ICME) for Metals Concept Case Studies; John Willey and Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Hodgson, P.D.; Gibbs, R.K. A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. Iron Steel Inst. Jpn. Int. 1992, 32, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Laasraoui, A.; Jonas, J.J. Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of steel plate and strip. Iron Steel Inst. Jpn. Int. 1991, 31, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Yada, H. Prediction of microstructural changes and mechanical properties in hot strip rolling. In Proceedings of the Metallurgical Society of the Canadian Institute of Mining and Metallurgy, 1st ed.; Pergamon Press: Kidlington, UK, 1988; pp. 105–119. [Google Scholar] [CrossRef]
- Kwon, H.C.; Lee, Y.; Kim, S.Y.; Woo, J.S. Numerical prediction of austenite grain size in round-oval-round bar rolling. Iron Steel Inst. Jpn. Int. 2003, 43, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Sellars, C.M.; Whiteman, J.A. Recrystallization and grain growth in hot rolling. J. Met. Sci. 1979, 13, 187–194. [Google Scholar] [CrossRef]
- Manohar, P.A.; Lim, K.; Rollett, A.D.; Lee, Y. Computational exploration of microstructural evolution in a medium C-Mn steel and applications of rod mill. Iron Steel Inst. Jpn. Int. 2003, 43, 1421–1430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, H.; Wang, G.; Hu, S. Application of mathematical model for microstructure and mathematical property of hot rolled wire rods. Appl. Math. Model. 2009, 33, 1259–1269. [Google Scholar] [CrossRef]
- Biglou, J.; Lenard, J.G. A study of dynamic recrystallization during hot rolling of microalloyed steels. CIRP Ann. 1996, 45, 227–230. [Google Scholar] [CrossRef]
- Hanoglu, U.; Šarler, B. Hot rolling simulation system for steel based on advanced meshless solution. Metals 2019, 9, 788. [Google Scholar] [CrossRef] [Green Version]
- Zhou-Jia, F.; Li-Wen, Y.; Qiang, X.; Chein-Shan, L. A boundary collocation method for anomalous heat conduction analysis in functionally graded materials. Comput. Math. Appl. 2021, 88, 91–109. [Google Scholar]
- Li, Y.; Li, J.; Wen, P.H. Finite and infinite block Petrov-Galerkin method for cracks in functionally graded materials. Appl. Math. Model. 2018, 68, 306–326. [Google Scholar] [CrossRef]
- Vertnik, R.; Šarler, B. Meshfree local radial basis function collocation method for diffusion problems. Comput. Math. Appl. 2006, 51, 1269–1282. [Google Scholar]
- Intel Math Kernel Library (Intel MKL); Version 2018.0; Intel Corporation: Santa Clara, CA, USA, 2018; Available online: https://software.intel.com/oneapi/onemkl (accessed on 20 November 2019).
- Bai, D.Q.; Yue, S.; Maccagno, T.; Jonas, J.J. Static recrystallization of Nb and Nb-B steels under continuous cooling conditions. Iron Steel Inst. Jpn. Int. 1996, 36, 1084–1093. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, X.; Liu, Z.; Wang, G. Determination of No-recrystallization temperature for NB-bearing Steel. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2016, 31, 644–647. [Google Scholar] [CrossRef]
- Fang, X.; Fan, Z.; Ralph, B.; Evans, P. Influence of accelerated cooling on microstructure and mechanical properties of C–Mn steels. Mater. Sci. Technol. 2002, 18, 47–53. [Google Scholar] [CrossRef]
- Sellars, C.M.; Beynon, J. Microstructural development during hot rolling of titanium microalloyed steels. In International Conference on High Strength Low Alloy Steels; University of Wollongong: Wollongong, NSW, Australia, 1985; pp. 142–150. [Google Scholar]
- Thompson, J.F.; Soni, B.K.; Weatherill, N.P. Handbook of Grid Generation, 1st ed.; Taylor & Francis Inc.: Abingdon, UK, 1998. [Google Scholar]
- Hanoglu, U.; Šarler, B. Simulation of hot shape rolling of steel in continuous rolling mill by local radial basis function collocation method. Comput. Model. Eng. Sci. 2015, 109, 447–479. [Google Scholar]
- Fornberg, B.; Flyer, N. Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput. Math. Appl. 2015, 69, 531–544. [Google Scholar] [CrossRef]
- DEFORM 2D; Version 10.1; Scientific Forming Technologies Corporation: Columbus, OH, USA, 2009; Available online: http://www.deform.com (accessed on 25 May 2021).
- Mingard, K.P.; Roebuck, B.; Bennett, E.G.; Gee, M.G.; Nordenstrom, H.; Sweetman, G.; Chan, P. Comparison of EBSD and conventional methods of grain size measurement of hardmetals. Int. J. Refract. Met. Hard Mater. 2009, 27, 213–223. [Google Scholar] [CrossRef]
- Palanichamy, P.; Joseph, A.; Jayakumar, T.; Raj, B. Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel. NDT E Int. 1995, 28, 179–185. [Google Scholar] [CrossRef]
Coefficients | [11] | [12] | [13] | [14] |
---|---|---|---|---|
6.82 × 10−4 | 4.76 × 10−4 | 4.9 × 10−4 | 4.9 × 10−4 | |
312,000 | 66,500 | 300,000 | 312,000 | |
0.13 | 0 | 0.17 | 0.15 | |
0 | 0 | 0.3 | 1 |
Coefficients | C-Mn-V | C-Mn-Ti | C-Mn-Nb |
---|---|---|---|
7 | 10 | 4.5 | |
× 1027 | × 1028 | × 1028 | |
−400 | −437 | −435 |
Coefficients | [10] (%C) + (%Mn)/6 > 0.35 | [10] (%C) + (%Mn)/6 < 0.35 | [26] C-Mn-Ti |
---|---|---|---|
−0.4 | 22.6 | 1.4 | |
6.37 | −57 | 0 | |
24.2 | 3 | 5 | |
−59 | 0 | 0 | |
22 | 22 | 22 | |
0.015 | 0.015 | 0.015 |
General Data | |
Initial size of the slab | 60.48 60.48 mm |
Initial temperature field of the slab | 1100 °C |
Entry velocity towards the rolling direction | 760 mm/s |
Coefficient of friction | 0.15 |
Initial grain size | 10 µm |
Material Model | |
for 16MnCr5 alloyed steel | |
Thermal Model | |
Thermal conductivity | 29 W/mmK |
Specific heat | 630 J/KgK |
Density | 7450 kg/m3 |
Heat transfer coefficient to air | 20 W/m2K |
Heat transfer coefficient to roll | 10,000 W/m2K |
Roll surface temperature | 600 °C |
Groove and Roll Data | |
Roll radii | 230 mm |
Roll gaps | 34.5–26.5–118–22.5–112–20–107.4–18.2 (mm) |
Groove geometries (H-horizontal, V-vertical) | flat (H)—flat (H)—oval box (V)—flat (H)—flat box (V)—flat (H)—flat box (V)—flat (H) |
Distance between rolling stands | 3 m (for the first five rolling stands), 4.5 m (after the fifth rolling stand). |
Passes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Position on rolling direction (mm) | 500 | 3500 | 6100 | 9700 | 13,300 | 20,800 | 25,300 | 29,800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanoglu, U.; Šarler, B. Developments towards a Multiscale Meshless Rolling Simulation System. Materials 2021, 14, 4277. https://doi.org/10.3390/ma14154277
Hanoglu U, Šarler B. Developments towards a Multiscale Meshless Rolling Simulation System. Materials. 2021; 14(15):4277. https://doi.org/10.3390/ma14154277
Chicago/Turabian StyleHanoglu, Umut, and Božidar Šarler. 2021. "Developments towards a Multiscale Meshless Rolling Simulation System" Materials 14, no. 15: 4277. https://doi.org/10.3390/ma14154277
APA StyleHanoglu, U., & Šarler, B. (2021). Developments towards a Multiscale Meshless Rolling Simulation System. Materials, 14(15), 4277. https://doi.org/10.3390/ma14154277