Analysis of the Fire Properties of Blown Insulation from Crushed Straw in the Buildings
Abstract
:1. Introduction
2. Production and Application of Crushed Straw as Insulation
2.1. Production
2.2. Preparation and Application
3. Fire Tests of Crushed Straw
3.1. Single-Flame Source Fire Test
3.2. Thermal Attack by a Single Burning Item (SBI) Fire Test
- Fire growth rate (FIGRA) index;
- Total heat release (THR600s);
- Smoke production as smoke growth rate (SMOGRA) index;
- Total smoke production (TSP600s);
- Lateral flame spread (LFS);
- Flaming droplets and particles according to their occurrence during the first 600 s of the test. After measuring and calculating, these values were used to classify the reaction to fire class according to the criteria given in Table 1.
3.3. Large-Scale Fire Test of a Wall Segment
4. Results
4.1. Single-Flame Source Fire Test
4.2. Thermal Attack by a Single Burning Item Fire Test
4.3. Large-Scale Fire Test of a Wall Segment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Alliance for Buildings and Construction, International Energy Agency and the United Nations. Available online: https://www.iea.org/areas-of-work/promoting-energy-efficiency/global-alliance-for-building-and-construction (accessed on 1 June 2021).
- Stevulova, N.; Vaclavik, V.; Hospodarova, V.; Dvorský, T. Recycled Cellulose Fiber Reinforced Plaster. Materials 2021, 14, 2986. [Google Scholar] [CrossRef] [PubMed]
- Bouali, G. Straw Bales and Straw-Bale Wall Systems; University of Arizona: Tucson, AZ, USA, 1993. [Google Scholar]
- Mutani, G.; Azzolino, C.; Macrì, M.; Mancuso, S. Straw Buildings: A Good Compromise between Environmental Sustainability and Energy-Economic Savings. Appl. Sci. 2020, 10, 2858. [Google Scholar] [CrossRef] [Green Version]
- Vanova, R.; Vlcko, M.; Stefko, J. Life Cycle Impact Assessment of Load-Bearing Straw Bale Residential Building. Materials 2021, 14, 3064. [Google Scholar] [CrossRef]
- MPO National Energy and Climate Plan of the Czech Republic. Eur. Comm. 2019, 437. Available online: https://www.mpo.cz/en/energy/strategic-and-conceptual-documents/the-national-energy-and-climate-plan-of-the-czech-republic-public-consultation--250519/ (accessed on 21 March 2021).
- Montero, G.; Coronado, M.A.; García, C.; Campbell, H.E.; Montes, D.G.; Torres, R.; Pérez, L.; León, J.A.; Ayala, J.R. Wheat Straw Open Burning: Emissions and Impact on Climate Change. In Global Wheat Production; IntechOpen: London, UK, 2018. [Google Scholar]
- Geng, X. Straw incineration odor hazard & disposal mechanism in economic perspective. Chem. Eng. Trans. 2018, 68, 73–78. [Google Scholar]
- The Global Risks Report 2020. Available online: https://www.weforum.org/reports/the-global-risks-report-2020 (accessed on 21 March 2021).
- Corbett, J. Massive “Climate Clock” Urging Governments to #ActInTime Unveiled on Metronome in New York City. Available online: https://www.commondreams.org/news/2020/09/19/massive-climate-clock-urging-govern-256ments-actintime-unveiled-metronome-new-york-city (accessed on 20 January 2021).
- Del Pero, C.; Bellini, O.; Martire, M.; di Summa, D. Sustainable Solutions for Mass-Housing Design in Africa: Energy and Cost Assessment for the Somali Context. Sustainability 2021, 13, 4787. [Google Scholar] [CrossRef]
- Fuentes, C.X.D.; Rojas, M.C.P.; Mancilla, J.J. Physical-thermal straw properties advantages in the design of a sustainable panel-type construction system to be used as an architectural dividing element. J. Phys. Conf. Ser. 2020, 1587, 012032. [Google Scholar] [CrossRef]
- González, A.D. Energy and carbon embodied in straw and clay wall blocks produced locally in the Andean Patagonia. Energy Build. 2014, 70, 15–22. [Google Scholar] [CrossRef]
- Dostál, D. Postavili Téměř Soběstačný Dům ze Slámy. Available online: https://www.businessinfo.cz/clanky/postavili-temer-sobestacny-dum-ze-slamy-material-odola-i-ohni/ (accessed on 21 March 2021).
- Kang, J.; Jin, Y.; Shao, T.; Jin, H. A study on the construction technics of strawbale walls in severe cold rural areas of northeast China. Sci. Sin. Technol. 2016, 46, 1079–1085. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Fu, F. Advanced High Strength Natural Fibre Composites in Construction; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780081004302. [Google Scholar]
- Chen, J.; Elbashiry, E.M.A.; Yu, T.; Ren, Y.; Guo, Z.; Liu, S. Research progress of wheat straw and rice straw cement-based building materials in China. Mag. Concr. Res. 2018, 70, 84–95. [Google Scholar] [CrossRef]
- Teslík, J.; Labudek, J.; Valová, B.; Vodičková, M. Settlement of Crushed Straw. Adv. Mater. Res. 2014, 1041, 55–58. [Google Scholar] [CrossRef]
- Petkova-Slipets, R.; Zlateva, P. Thermal Insulating Properties of Straw-Filled Environmentally Friendly Building Materials. Civ. Environ. Eng. 2017, 13, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Vėjelienė, J.; Gailius, A.; Vėjelis, S.; Vaitkus, S.; Balčiūnas, G. Evaluation of Structure Influence on Thermal Conductivity of Thermal Insulating Materials from Renewable Resources. Mater. Sci. 2011, 17, 208–212. [Google Scholar] [CrossRef]
- Sabapathy, K.; Gedupudi, S. Straw bale based constructions: Measurement of effective thermal transport properties. Constr. Build. Mater. 2019, 198, 182–194. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 2017, 115, 131–138. [Google Scholar] [CrossRef]
- Lawrence, M.; Heath, A.; Walker, P. Determining moisture levels in straw bale construction. Constr. Build. Mater. 2009, 23, 2763–2768. [Google Scholar] [CrossRef] [Green Version]
- Johansson, P.; Ekstrand-Tobin, A.; Svensson, T.; Bok, G. Laboratory study to determine the critical moisture level for mould growth on building materials. Int. Biodeterior. Biodegradation 2012, 73, 23–32. [Google Scholar] [CrossRef]
- Goodhew, S.; Griffiths, R. Analysis of thermal-probe measurements using an iterative method to give sample conductivity and diffusivity data. Appl. Energy 2004, 77, 205–223. [Google Scholar] [CrossRef]
- Lataille, J.I. Fire Protection Engineering in Building Design. Fire Prot. Eng. Build. Des. 2003, 1–133. [Google Scholar] [CrossRef]
- Delegou, E.T.; Apostolopoulou, M.; Ntoutsi, I.; Thoma, M.; Keramidas, V.; Papatrechas, C.; Economou, G.; Moropoulou, A. The Effect of Fire on Building Materials: The Case-Study of the Varnakova Monastery Cells in Central Greece. Heritage 2019, 2, 80. [Google Scholar] [CrossRef] [Green Version]
- Flodr, J.; Krejsa, M.; Lehner, P. Temperature and Structural Analysis of Omega Clip. Int. J. Steel Struct. 2019, 19, 1295–1301. [Google Scholar] [CrossRef]
- Fletcher, I.A.; Welch, S.; Torero, J.; Carvel, R.O.; Usmani, A. Behaviour of concrete structures in fire. Therm. Sci. 2007, 11, 37–52. [Google Scholar] [CrossRef]
- Allam, M.E.; Garas, G.L.; El Kady, H.G. Recycled Chopped Rice Straw-Cement Bricks: Mechanical, Fire Resistance & Economical Assessment. Aust. J. Basic Appl. Sci. 2017, 5, 27–33. [Google Scholar]
- Walker, P.; Thomson, A.; Maskell, D. Straw bale construction. Nonconv. Vernac. Constr. Mater. 2020, 189–216. [Google Scholar] [CrossRef]
- Apte, V.; Griffin, G.J.; Paroz, B.W.; Bicknell, A.D. The fire behaviour of rendered straw bales. Fire Mater. 2008, 32, 259–279. [Google Scholar] [CrossRef]
- Teslík, J.; Hošťálková, M.; Vavřínová, N. Ignitability small attack flame fire test of gypsum composite reinforced with natural fibres. Int. Rev. Appl. Sci. Eng. 2019, 10, 57–61. [Google Scholar] [CrossRef]
- Teslík, J.; Vodičková, M.; Kutilová, K. The Assessment of Reaction to Fire of Crushed Straw. Appl. Mech. Mater. 2016, 824, 148–155. [Google Scholar] [CrossRef]
- Sietske Boschma, D.; Kees, I.; Kwant, W. Rice straw and Wheat straw Potential feedstocks for the Biobased Economy Colofon. NL Agency Minist. Econ. Aff. 2013, 1–31. [Google Scholar]
- Himel, S.R.O. Available online: www.himel.cz (accessed on 30 April 2021).
- ČSN 73 0810. Fire protection of buildings—General requirements, Part 1-1: General—Common Rules and Rules for Buildings. 2004. [Google Scholar]
- EN 1995-1-2. Design of Timber Structures, Part 1–2: General—Structural Fire Design. Eurocode 2010, 5, 7. [Google Scholar]
- ISO 11925-3. Reaction to Fire Tests—Ignitability of Building Products Subjected to Direct Impingement of Flame—Part 3: Multi-source Test. 1997. [Google Scholar]
- EN 13823. Reaction to Fire Tests for Building Products—Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item. 2010; pp. 1–104. [Google Scholar]
- EN13641. Fire Resistance Tests for Non-Loadbearing Elements—Part 1: Walls. 2015. [Google Scholar]
- Agel, P.; Labudek, J. LAG Frame-Multi-purpose wooden load-bearing element for building with blown insulation. In Czech: Víceúčelový Dřevěný Nosný Prvek pro Stavby Zateplené Foukanou Izolací; Utility Model No. 22209; Registration Czech Republic; 2011. [Google Scholar]
- Kymäläinen, H.-R.; Sjöberg, A.-M. Flax and hemp fibres as raw materials for thermal insulations. Build. Environ. 2008, 43, 1261–1269. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, J. Fire simulation test and analysis of laminated bamboo frame building. Constr. Build. Mater. 2012, 34, 257–266. [Google Scholar] [CrossRef]
- Breum, N.O.; Schneider, T.; Jørgensen, O.; Rasmussen, T.V.; Eriksen, S.S. Cellulosic Building Insulation versus Mineral Wool, Fiberglass or Perlite: Installer’s Exposure by Inhalation of Fibers, Dust, Endotoxin and Fire-retardant Additives. Ann. Occup. Hyg. 2003, 47, 653–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Main Classification | Smoke Production | Flaming Droplets and Particles | |||
---|---|---|---|---|---|
A2 | FIGRA0.2 MJ ≤ 120 W/s LFS < sample edge THR600s ≤ 7.5 MJ | s1 | SMOGRA ≤ 30 m2/s2 TSP600s ≤ 50 m2 | d0 | No flaming droplets/particles |
B | FIGRA0.2 MJ ≤ 120 W/s LFS < sample edge THR600s ≤ 7.5 MJ | s1 | SMOGRA ≤ 30 m2/s2 TSP600s ≤ 50 m2 | d0 | No flaming droplets/particles |
C | FIGRA0.4 MJ ≤ 250 W/s LFS < sample edge THR600s ≤ 15 MJ | s2 | SMOGRA ≤ 180 m2/s2 TSP600s ≤ 200 m2 | d1 | No flaming droplets/particles in EN 13823 persisting longer than 10 s within 600 s |
D | FIGRA0 ≤ 750 W/s | s3 | Not s1 or s2. | d2 | Not d0 or d1 |
Mark | Composition |
---|---|
1 |
|
2 |
|
3 |
|
Parameter | Sample | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Ignitability | Yes | Yes | Yes | Yes | Yes |
Achieving the flame to the mark 150 mm | No | No | No | No | No |
Burning time track 150 mm (s) | - | - | - | - | - |
Classification Parameter | No. of the Test Sample | Mean | ||
---|---|---|---|---|
1 | 2 | 3 | ||
THR600s (MJ) | 5.2 | 5.6 | 5.4 | 5.4 |
LFS (Yes/No) | No | No | Ne | Ne |
FIGRA0.2MJ (W/s) | 123.0 | 134.9 | 129.8 | 129.2 |
FIGRA0.4MJ (W/s) | 114.7 | 121.9 | 119.8 | 118.8 |
TSP600s (m2) | 46.6 | 44.9 | 48.1 | 46.5 |
SMOGRA (m2/s2) | 2.7 | 2.0 | 3.0 | 2.6 |
Reaction to fire | C-s1, d0 | C-s1, d0 | C-s1, d0 | C-s1, d0 |
Mark | Fire Resistance of the Test Segment for Category DP3 | Fire Resistance of the Test Segment for Category DP2 |
---|---|---|
1 | EI 90 DP3 | EI 15 DP2 |
2 | EI 60 DP3 | - |
3 | EI 90 DP3 | EI 15 DP2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teslík, J. Analysis of the Fire Properties of Blown Insulation from Crushed Straw in the Buildings. Materials 2021, 14, 4336. https://doi.org/10.3390/ma14154336
Teslík J. Analysis of the Fire Properties of Blown Insulation from Crushed Straw in the Buildings. Materials. 2021; 14(15):4336. https://doi.org/10.3390/ma14154336
Chicago/Turabian StyleTeslík, Jiří. 2021. "Analysis of the Fire Properties of Blown Insulation from Crushed Straw in the Buildings" Materials 14, no. 15: 4336. https://doi.org/10.3390/ma14154336
APA StyleTeslík, J. (2021). Analysis of the Fire Properties of Blown Insulation from Crushed Straw in the Buildings. Materials, 14(15), 4336. https://doi.org/10.3390/ma14154336