Silicate Mineral Eutectics with Special Reference to Lithium
Abstract
:1. Introduction
1.1. Characteristics of Flux Minerals
1.2. Selected Thermal Parameters of Mineral Flux Systems
2. Materials and Methods
- − shrinkage starting temperature Tg (sintering)
- − softening temperature Ta (corner rounding-end of sintering)
- − melting point Tb (hemispherical effect-formation of mineral eutectic)
- − spreading temperature Tc (sample base >200% or 1/3 height)
- − sintering interval (corner rounding temp. Ta-shrinkage temp. Tg)
- − melting interval (hemisphere temperature Tb-corner rounding temperature Ta)
- − flowing interval (spreading temp. Tc-hemisphere temp. Tb),
3. Results and Discussion
3.1. Characteristic Temperatures
3.2. Sintering, Melting and Flowing Intervals
3.3. Thermal Parameters of a Three-Component Flux System
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenntech, B.V. Lithium and Water Reaction Mechanisms, Environmental Impact and Health Effects. 2018. Available online: http://www.lenntech.com/periodic/water/lithium/lithium-and-water.htm (accessed on 22 June 2018).
- Service, R. Seawater could provide nearly unlimited amounts of critical battery material. Science 2020. [Google Scholar] [CrossRef]
- Brown, E.E.; Gerretsen, P.; Pollock, B.; Graff-Guerrero, A. Psychiatric benefits of lithium in water supplies may be due to protection from the neurotoxicity of lead exposure. Med. Hypotheses 2018, 115, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.; Rogers, I.; Fitzsimmons, S.M.D.D.; Carter, B.; Strawbridge, R.; Hidalgo-Mazzei, D.; Young, A.H. Association between naturally occurring lithium in drinking water and suicide rates: Systematic review and meta-analysis of ecological studies. Br. J. Psychiatry 2020, 217, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Jaskula, B.W. Mineral Commodity Summaries 2019; United States Geological Survey: Reston, VA, USA, 2019; pp. 98–99. [Google Scholar]
- Dessemond, C.; Lajoie-Leroux, F.; Soucy, G.; Laroche, N.; Magnan, J.-F. Spodumene: The Lithium Market, Resources and Processes. Minerals 2019, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Timoshevskii, A.N.; Ktalkherman, M.G.; Emel’Kin, V.A.; Pozdnyakov, B.A.; Zamyatin, A.P. High-temperature decomposition of lithium carbonate at atmospheric pressure. High Temp. 2008, 46, 414–421. [Google Scholar] [CrossRef]
- Liu, W.; Chu, G.W.; Li, S.C.; Bai, S.; Luo, Y.; Sun, B.C.; Chen, J.F. Preparation of lithium carbonate by thermal decomposition in a rotating packed bed reactor. Chem. Eng. J. 2019, 377, 119929. [Google Scholar] [CrossRef]
- Shi, L.; Qu, T.; Liu, D.; Deng, Y.; Yang, B.; Dai, Y. Process of Thermal Decomposition of Lithium Carbonate. In Materials Processing Fundamentals; Lee, J., Wagstaff, S., Lambotte, G., Allanore, A., Tesfaye, F., Eds.; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Garrett, D.E. Handbook of Lithium and Natural Calcium Chloride; Elsevier: New York, NY, USA, 2004. [Google Scholar]
- Kenfack, F.; Vieth, S. Synthesis of eucryptite spheres. J. Mater. Sci. 2008, 43, 4644–4651. [Google Scholar] [CrossRef]
- Murthy, M.K.; Hummel, F.A. Phase equilibria in the system lithium metasilicate-eukryptit. J. Am. Ceram. Soc. 1954, 37, 14–17. [Google Scholar] [CrossRef]
- Suárez, M.; Fernández, A.; Díaz, L.A.; Sobrados, I.; Sanz, J.; Borrell, A.; Palomares, F.J.; Torrecillas, R.; Moya, J.S. Synthesis and sintering at low temperature of a new nanostructured beta-Eucryptite dense compact by spark plasma sintering. Ceram. Int. 2020, 46, 18469–18477. [Google Scholar] [CrossRef]
- Cioch, A.; Izak, P.; Stempkowska, A.; Thiery, D. Właściwości stopu układu: Spodumen-skaleń potasowy-skaleń sodowy. Szkło Ceram. 2009, 1, 29–32. [Google Scholar]
- Izak, P.; Cioch, A.; Thiery, D. Charakterystyka układu spodumen-skaleń potasowy-skaleń sodowy. Ceramika 2008, 103, 1201–1206. [Google Scholar]
- Kunasz, I.A. Lithium Resources. In Industrial Minerals and Rocks; SME (Society Mining Metallurgy and Exploration): Englewood, CO, USA, 2006; pp. 599–614. [Google Scholar]
- Dessemond, C.; Soucy, G.; Harvey, J.-P.; Ouzilleau, P. Phase Transitions in the α–γ–β Spodumene Thermodynamic System and Impact of γ-Spodumene on the Efficiency of Lithium Extraction by Acid Leaching. Minerals 2020, 10, 519. [Google Scholar] [CrossRef]
- Lewicka, E. Podaż surowców skaleniowych w Polsce ze źródeł krajowych i zagranicznych w świetle potrzeb rynku. Przegląd Geol. 2017, 65, 392–399. [Google Scholar]
- Sokolář, R.; Keršnerová, L.; Šveda, M. The effect of different fluxing agents on the sintering of dry pressed porcelain bodies. J. Asian Ceram. Soc. 2017, 5, 290–294. [Google Scholar] [CrossRef]
- Bozdoǧan, I.; Göknel, I. Turkish feldspar. Ceramika/Ceramics 2004, 84, 115–118. [Google Scholar]
- Wyszomirski, P.; Gacki, F.; Szydłak, T. Turkish feldspar raw materials in polish production of ceramic tiles. Gospod. Surowcami Miner./Miner. Resour. Manag. 2012, 28, 5–18. [Google Scholar] [CrossRef]
- Handke, M. Krystalochemia Krzemianów; Wydawnictwa AGH: Kraków, Poland, 2008. [Google Scholar]
- Wyszomirski, P.; Galos, K. Surowce Mineralne i Chemiczne Przemysłu Ceramicznego; AGH Uczelniane Wydawnistwo Naukowo-Dydaktyczne: Kraków, Poland, 2007. [Google Scholar]
- Xia, J.; Geng, R.; Chen, Z. The Effect of K-feldspar and Silica as Fluxing Agent on the Production Process of Phosphorus Furnace. Silicon 2018, 11, 233–239. [Google Scholar] [CrossRef]
- Peng, L.; Qin, S. Sintering behavior and technological properties of low-temperature porcelain tiles prepared using a lithium ore and silica waste. Minerals 2019, 9, 731. [Google Scholar] [CrossRef] [Green Version]
- Grimvall, G. Thermophysical Properties of Materials; North-Holland: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Kalinowski, E. Termodynamika; Wydawnictwo Politechniki Wrocławskiej: Wrocław, Poland, 1994. [Google Scholar]
- Więckowski, J. Właściwości Cieplne i Magnetyczne Wybranych Związków Kobaltu o Strukturze Warstwowej. Ph.D. Thesis, Polska Akademia Nauk, Warszawa, Poland, 2013. [Google Scholar]
- Szargut, J. Termodynamika Techniczna; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2000. [Google Scholar]
- Stempkowska, A.; Izak, P.; Mastalska-Popławska, J.; Staszewska, M. The analysis of thermal properties of selected rock materials by thermovision methods. J. Pol. Miner. Eng. Soc. 2018, 20, 337–344. [Google Scholar]
- Stempkowska, A.; Mastalska-Popławska, J.; Izak, P.; Wójcik, Ł.; Gawenda, T.; Karbowy, M. Research on the Thermal Properties of Fireplace Concrete Materials Containing Various Mineral Aggregates Enriched by Organic and Inorganic Fibers. Materials 2021, 14, 904. [Google Scholar] [CrossRef]
- Zergadło, B.; Halicka, A. Analiza właściwości cieplnych betonu z kruszywem z odpadów ceramiki sanitarnej. Bud. Archit. 2011, 9, 39–49. [Google Scholar]
- Boyd, J.E. Pyrometric Properties of Spodumene-Felspar Mixtures. J. Am. Ceram. Soc. 1938, 21, 385–388. [Google Scholar] [CrossRef]
- Amarante, M.M.; Botelho de Sousa, A.; Machado Lite, M. Technical note processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies. Miner. Eng. 1999, 12, 433–436. [Google Scholar] [CrossRef]
- Abdullah, A.A.; Oskierski, H.C.; Altarawneh, M.; Senanayake, G.; Lumpkin, G.; Dlugogorski, B. Phase transformation mechanism of spodumene during its calcination. Miner. Eng. 2019, 140, 105883. [Google Scholar] [CrossRef]
- Saalfeld, H. Struktur und Ausdehnungsverhalten von Li-Al-Silikate. Ber. Dtsch. Keram. Ges. 1961, 38, 281–286. [Google Scholar]
- Schön, J. Physical Properties of Rock. Dev. Pet. Sci. 2015, 65, 369–414. [Google Scholar]
Melting Point (°C) | Spodumene | Albite | Microcline |
1423 | 1118 | 1150 |
Raw Material | Norfloat Spar | Albitte 5 | Gresflux | Concentrate |
---|---|---|---|---|
Chemical Composition (wt.%) | ||||
SiO2 | 65.9 | 67.1 | 68.0 | 64.95 |
Al2O3 | 18.5 | 18.8 | 22.0 | 26.80 |
CaO | 0.5 | 0.6 | 0.4 | 0.05 |
MgO | 0.1 | 1.3 | 0.2 | 0.00 |
TiO2 | <0.05 | 0.36 | - | - |
Fe2O3 | 0.23 | 0.7 | 0.4 | 0.07 |
MnO | <0.05 | <0.05 | 0.2 | - |
P2O5 | 0.06 | 0.13 | 0.3 | 0.12 |
Na2O | 2.9 | 9.5 | 1.0 | 0.15 |
K2O | 12.0 | 0.2 | 1.0 | 0.08 |
Li2O | - | - | 6.1 | 7.50 |
LOI | 1.02 | 1.49 | 0.29 | 0.23 |
Melting point (°C) | 1434 | 1360 | 1414 | 1410 |
Dominant mineral | microcline | albite | spodumene | spodumene |
Oxide | cv (J/kg·K) |
---|---|
SiO2 | 742 |
Al2O3 | 775 |
Fe2O3 | 655 |
MgO | 924 |
CaO | 750 |
Na2O | 1115 |
K2O | 764 |
Li2O | 1811 |
Raw Material | Norfloat Spar | Albitte 5 | Gresflux | Concentrate |
---|---|---|---|---|
cv (J/kg K) | 762.63 | 772.14 | 811.79 | 828.95 |
density (g/cm3) | 2.58 | 2.61 | 3.1 | 3.1 |
Set Number | b (MJ/(m3K)) | t (s) | Set Number | b (MJ/(m3K)) | t (s) |
---|---|---|---|---|---|
1 | 1.976 | 7794 | A | 2.268 | 7002 |
2 | 1.986 | 7656 | B | 2.213 | 7182 |
3 | 1.996 | 7620 | C | 2.159 | 6912 |
4 | 2.006 | 7542 | D | 2.196 | 6882 |
5 | 2.073 | 7098 | E | 2.111 | 6936 |
6 | 2.083 | 7224 | F | 2.092 | 6828 |
7 | 2.093 | 7074 | G | 2.141 | 6858 |
8 | 2.103 | 7056 | H | 2.169 | 6882 |
9 | 2.112 | 7044 | I | 2.143 | 6816 |
10 | 2.180 | 7146 | J | 2.147 | 6864 |
11 | 2.190 | 7044 | K | 2.042 | 7110 |
12 | 2.201 | 7050 | L | 2.067 | 6900 |
13 | 2.211 | 7062 | M | 2.093 | 6894 |
14 | 2.290 | 7560 | N | 2.049 | 7134 |
15 | 2.301 | 7410 | O | 2.027 | 7272 |
16 | 2.311 | 7428 | P | 2.054 | 7092 |
17 | 2.402 | 7650 | R | 2.223 | 7123 |
18 | 2.413 | 7998 |
Set Number | b (MJ/(m3K)) | t (s) | Set Number | b (MJ/(m3K)) | t (s) |
---|---|---|---|---|---|
1 | 1.976 | 7578 | A | 2.295 | 7746 |
2 | 1.986 | 7566 | B | 2.235 | 7632 |
3 | 1.995 | 7602 | C | 2.175 | 7722 |
4 | 2.005 | 7596 | D | 2.215 | 7662 |
5 | 2.082 | 7044 | E | 2.121 | 7938 |
6 | 2.091 | 6858 | F | 2.102 | 7998 |
7 | 2.102 | 6936 | G | 2.156 | 7800 |
8 | 2.112 | 6864 | H | 2.185 | 7716 |
9 | 2.122 | 6942 | I | 2.158 | 7782 |
10 | 2.200 | 6954 | J | 2.161 | 7824 |
11 | 2.200 | 6882 | K | 2.047 | 8220 |
12 | 2.220 | 6942 | L | 2.074 | 8100 |
13 | 2.230 | 7056 | M | 2.102 | 7992 |
14 | 2.320 | 7410 | N | 2.053 | 8226 |
15 | 2.331 | 7422 | O | 2.029 | 8286 |
16 | 2.341 | 7392 | P | 2.058 | 8184 |
17 | 2.444 | 7902 | R | 2.255 | 8246 |
18 | 2.454 | 7830 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stempkowska, A. Silicate Mineral Eutectics with Special Reference to Lithium. Materials 2021, 14, 4334. https://doi.org/10.3390/ma14154334
Stempkowska A. Silicate Mineral Eutectics with Special Reference to Lithium. Materials. 2021; 14(15):4334. https://doi.org/10.3390/ma14154334
Chicago/Turabian StyleStempkowska, Agata. 2021. "Silicate Mineral Eutectics with Special Reference to Lithium" Materials 14, no. 15: 4334. https://doi.org/10.3390/ma14154334
APA StyleStempkowska, A. (2021). Silicate Mineral Eutectics with Special Reference to Lithium. Materials, 14(15), 4334. https://doi.org/10.3390/ma14154334