Processing Optimization and Toxicological Evaluation of “Lead-Free” Piezoceramics: A KNN-Based Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ceramic Preparation
2.2. Materials Characterization
2.3. Toxicology Assessment
2.3.1. Human Alveolar A549 Cells Viability Assay
2.3.2. Saccharomyces cerevisiae Viability Assay
3. Results and Discussion
3.1. Ball Milling Effect on Mixed Powders
3.2. Sintered KNN-xMN Ceramics and Piezoelectric Properties Assessment
3.3. Toxicology Assessment Using Adenocarcinoma A549 Human Cells
3.4. Toxicology Assessment Using the Model Yeast Saccharomyces Cerevisiae
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garroni, S.; Senes, N.; Iacomini, A.; Enzo, S.; Mulas, G.; Pardo, L.; Cuesta-lopez, S. Advanced Synthesis on Lead-Free KxNa (1-x)NbO3 Piezoceramics for Medical Imaging Applications. Phys. Status Solidi A 2018, 215, 1700896. [Google Scholar] [CrossRef] [Green Version]
- Rödel, J.; Li, J. Lead-free piezoceramics: Status and perspectives. Mater. Res. Bull. 2018, 43, 576–580. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhao, J.; Li, Q.; Li, Y. Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement. Appl. Energy 2018, 229, 18–30. [Google Scholar] [CrossRef]
- Vázquez-Rodríguez, M.; Jiménez, F.J.; Pardo, L.; Ochoa, P.; González, A.M.; de Frutos, J. A New Prospect in Road Traffic Energy Harvesting Using Lead-Free Piezoceramics. Materials 2019, 12, 3725. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 2018, 98, 552–624. [Google Scholar] [CrossRef]
- Rodel, J.; Jo, W.; Seifert, K.T.P.; Anton, E.; Granzow, T.; Damjanovic, D. Perspective on the Development of Lead-free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. [Google Scholar] [CrossRef]
- Li, J.-F.; Wang, K.; Zhu, F.-Y.; Cheng, L.-Q.; Yao, F.-Z. (K, Na)NbO3-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges. J. Am. Ceram. Soc. 2013, 96, 3677–3696. [Google Scholar] [CrossRef]
- Cheng, X.; Wu, J.; Wang, X.; Zhang, B.; Zhu, J.; Xiao, D.; Wang, X.; Lou, X. Giant d33 in (K,Na)(Nb,Sb)O3-(Bi,Na,K, Li)ZrO3 based lead-free piezoelectrics with high Tc. Appl. Phys. Lett. 2013, 103, 052906. [Google Scholar] [CrossRef]
- Yamada, H.; Matsuoka, T.; Kozuka, H.; Yamazaky, M.; Ohbayashi, K.; Ida, T. Improvement of the piezoelectric properties in (K,Na)NbO3-based lead-free piezoelectric ceramic with two-phase co-existing state. J. Appl. Phys. 2015, 117, 214102. [Google Scholar] [CrossRef]
- Cheng, X.; Gou, Q.; Wu, J.; Wang, X.; Zhang, B.; Xiao, D.; Zhu, J.; Wang, X.; Lou, X. Dielectric, ferroelectric, and piezoelectric properties in potassium sodium niobate ceramics with rhombohedral–orthorhombic and orthorhombic–tetragonal phase boundaries. Ceram. Int. 2014, 40, 5771–5779. [Google Scholar] [CrossRef]
- Directive EU. EU-Directive 2002/95/EC: Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Off. J. Eur. Union 2003, 46, 19–23. [Google Scholar]
- Senes, N.; Iacomini, A.; Domingo, N.; Enzo, S.; Mulas, G.; Cuesta-lopez, S.; Garroni, S. Local Piezoelectric Behavior of Potassium Sodium Niobate Prepared by a Facile Synthesis via Water Soluble Precursors. Phys. Status Solidi A 2018, 215, 1700921. [Google Scholar] [CrossRef]
- Rojac, T.; Benčan, A.; Uršič, H.; Malič, B.; Kosec, M. Synthesis of a Li- and Ta-Modified (K,Na)NbO3 Solid Solution by Mechanochemical Activation. J. Am. Ceram. Soc. 2008, 91, 3789–3791. [Google Scholar] [CrossRef]
- Beltrami, R.; Mercadelli, E.; Baldisserri, C.; Galassi, C.; Braghin, F.; Lecis, N. Synthesis of KNN powders: Scaling effect of the milling step. Powder Technol. 2020, 375, 101–108. [Google Scholar] [CrossRef]
- Malič, B.; Koruza, J.; Hreščak, J.; Bernard, J.; Wang, K.; Fisher, J.G.; Benčan, A. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics. Materials 2015, 8, 8117–8146. [Google Scholar] [CrossRef] [Green Version]
- Ibn-Mohammed, T.; Koh, T.S.C.L.; Reaney, I.M.; Sinclair, D.C.; Mustapha, K.B.; Acquaye, A.; Wang, D. Are lead-free piezoelectrics more environmentally friendly? MRS Commun. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ibn-mohammed, T.; Reaney, I.M.; Koh, S.C.L.; Acquaye, A.; Sinclair, D.C.; Randall, C.A.; Abubakara, F.H.; Smith, L.; Schileo, G.; Ozawa-Meida, L. Life cycle assessment and environmental profile evaluation of lead-free piezoelectrics in comparison with lead zirconate titanate. J. Eur. Ceram. Soc. 2018, 38, 4922–4938. [Google Scholar] [CrossRef]
- Yu, S.; Kuo, S.; Tuan, W.; Tsai, Y.; Wang, S. Cytotoxicity and degradation behavior of potassium sodium niobate piezoelectric ceramics. Ceram. Int. 2012, 38, 2845–2850. [Google Scholar] [CrossRef]
- Lutterotti, L.; Scardi, P. Simultaneous Structure and Size-Strain Refinement by the Rietveld Method. J. Appl. Cryst. 1990, 23, 246–252. [Google Scholar] [CrossRef]
- Singh, R.; Patro, P.K.; Kulkarni, A.R.; Harendranath, C.S. Synthesis of nano-crystalline potassium sodium niobate ceramic using mechanochemical activation. Ceram. Int. 2014, 40, 10641–10647. [Google Scholar] [CrossRef]
- Hreščak, J.; Bencan, A.; Rojac, T.; Malič, B. The influence of different niobium pentoxide precursors on the solid-state synthesis of potassium sodium niobate. J. Eur. Ceram. Soc. 2013, 33, 3065–3075. [Google Scholar] [CrossRef]
- Garroni, S. Deformation conditions for Ni powders undergoing mechanical processing. J. Phys. Chem. Solids 2012, 73, 770–776. [Google Scholar] [CrossRef]
- Farooq, M.U.; Fisher, J.G.; Kim, J.H.; Kim, D.; Shin, E.C.; Kim, Y.H.; Kim, J.H.; Moon, S.H.; Lee, J.S.; Lin, X.; et al. Reactive sintering of lead-free piezoelectric (K0.5Na0.5)NbO3 ceramics. J. Ceram. Process. Res. 2016, 17, 304–312. [Google Scholar]
- Tanaka, H. Comparison of thermal properties and kinetics of decompositions of NaHCO3 and KHCO3. J. Therm. Anal. 1987, 32, 521–526. [Google Scholar] [CrossRef]
- Malic, B.; Jenko, D.; Holc, J.; Hrovat, M.; Kosec, M. Synthesis of Sodium Potassium Niobate: A Diffusion Couples Study. J. Am. Ceram. Soc. 2008, 91, 1916–1922. [Google Scholar] [CrossRef]
- Hussain, F.; Sterianou, I.; Khesro, A.; Sinclair, D.C.; Reaney, I.M. p-Type/n-type behaviour and functional properties of KxNa(1−x)NbO3 (0.49 ≤ x ≤ 0.51) sintered in air and N2. J. Eur. Ceram. Soc. 2018, 38, 3118–3126. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liang, P.; Wu, D.; Zhao, X.; Qiao, X.; Peng, Z.; Wei, L.; Chao, X.; Yang, Z. High efficiency synthesis of high-performance K0.5Na0.5NbO3 ceramics. Powder Technol. 2019, 346, 248–255. [Google Scholar] [CrossRef]
- Sakai, T.; Hoshiai, S.; Nakamachi, E. Biochemical compatibility of PZT piezoelectric ceramics covered with titanium thin film. J. Optoelectron. Adv. Mater. 2006, 8, 1435–1437. [Google Scholar]
- Chen, W.; Yu, Z.; Pang, J.; Yu, P.; Tan, G.; Ning, C. Fabrication of Biocompatible Potassium Sodium Niobate Piezoelectric Ceramic as an Electroactive Implant. Materials 2017, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Chen, J.; Wang, Z.; Zhai, J.; Li, Y. The antibacterial effect of potassium-sodium niobate ceramics based on controlling piezoelectric properties. Colloids Surf. B 2019, 175, 463–468. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacomini, A.; Tamayo-Ramos, J.A.; Rumbo, C.; Urgen, I.; Mureddu, M.; Mulas, G.; Enzo, S.; Garroni, S. Processing Optimization and Toxicological Evaluation of “Lead-Free” Piezoceramics: A KNN-Based Case Study. Materials 2021, 14, 4337. https://doi.org/10.3390/ma14154337
Iacomini A, Tamayo-Ramos JA, Rumbo C, Urgen I, Mureddu M, Mulas G, Enzo S, Garroni S. Processing Optimization and Toxicological Evaluation of “Lead-Free” Piezoceramics: A KNN-Based Case Study. Materials. 2021; 14(15):4337. https://doi.org/10.3390/ma14154337
Chicago/Turabian StyleIacomini, Antonio, Juan Antonio Tamayo-Ramos, Carlos Rumbo, Irem Urgen, Marzia Mureddu, Gabriele Mulas, Stefano Enzo, and Sebastiano Garroni. 2021. "Processing Optimization and Toxicological Evaluation of “Lead-Free” Piezoceramics: A KNN-Based Case Study" Materials 14, no. 15: 4337. https://doi.org/10.3390/ma14154337
APA StyleIacomini, A., Tamayo-Ramos, J. A., Rumbo, C., Urgen, I., Mureddu, M., Mulas, G., Enzo, S., & Garroni, S. (2021). Processing Optimization and Toxicological Evaluation of “Lead-Free” Piezoceramics: A KNN-Based Case Study. Materials, 14(15), 4337. https://doi.org/10.3390/ma14154337