Multi-Objective Optimization and Performance Characterization of Asphalt Modified by Nanocomposite Flame-Retardant Based on Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Method and Process of Composite Flame-Retardant Modified Asphalt
2.3. Performance Test of Composite Flame-Retardant Modified Asphalt
2.3.1. Physical Properties
2.3.2. Flame Retardant Properties
2.3.3. Performance Characterization Analysis
2.4. Single Factor Test
2.5. RSM Test Optimization Design Plan
3. Results
3.1. Model Checking and Analysis
3.1.1. Model Checking
3.1.2. Model Analysis
3.2. Formula Composition Optimization Based on the Normalized Value of the Overall Performance Evaluation
3.3. Characterization of Composite Flame Retardant Modified Asphalt
3.3.1. High Temperature Performance Characterization
- Dynamic shear rheology test
- 2.
- Multiple stress creep test
3.3.2. Low Temperature Performance Characterization
- Force ductility tester (FDT)
- 2.
- Bending beam rheometer
3.3.3. Characterization of Flame Retardant Performance of Composite Modified Asphalt
4. Conclusions
- (1)
- The physical performance analysis of asphalt modified by nanocomposite flame-retardant shows that the HNTs reduces the ductility deterioration, reduces penetration, and has a greater impact on the physical properties of asphalt. The flame retardant performance analysis shows that ATH plays a major role in endothermic in the initial stage of thermal decomposition of asphalt, increasing the limiting oxygen index and ignition point and has a greater impact on the flame retardant properties of asphalt.
- (2)
- A regression model was established based on response surface method multi-objective optimization. ADP has the most significant impact on the overall evaluation normalization value, because it mainly produces phosphoric acid to catalyze the condensation of asphalt into carbon and blocks the combustion process. The relative error is 0.21% measured by the response surface method between the predicted OD value and the actual value. Which indicates that the prediction effect of the model is accurate and effective, and the multi-objective optimization of comprehensive asphalt performance can be better achieved.
- (3)
- Based on the rheological performance test and CCTs, MA, CFRMA, and HNTs-CFRMA were analyzed. The flame retardant compounded with HNTs and CFR is added to the modified asphalt to improve the high temperature performance of the asphalt. It compensates for the deterioration of the low temperature performance of asphalt caused by conventional flame retardants, and reduces the heat release rate and smoke release rate. It shows that it has good flame retardant performance and smoke suppression performance. And it is a kind of asphalt flame retardant system with excellent performance, environmental friendliness, and bright prospects.
Author Contributions
Funding
Conflicts of Interest
References
- Chen, R.; Zhao, R.; Liu, Y.; Xi, Z.; Cai, J.; Zhang, J.; Wang, Q.; Xie, H. Development of eco-friendly fire-retarded warm-mix epoxy asphalt binders using reactive polymeric flame retardants for road tunnel pavements. Constr. Build. Mater. 2021, 284, 122752. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, M.; Yang, T.; Wu, S.; Wang, K. Effect of Steel Slag Aggregate on Pavement and Flame-Retardant Performance of Warm-Mixed Flame-Retardant Asphalt Concrete. Materials 2021, 14, 635. [Google Scholar] [CrossRef]
- Sheng, Y.; Wu, Y.; Yan, Y.; Jia, H.; Qiao, Y.; Underwood, B.S.; Niu, D.; Kim, Y.R. Development of environmentally friendly flame retardant to achieve low flammability for asphalt binder used in tunnel pavements. J. Clean. Prod. 2020, 257, 120487. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, R.; Wang, J. Flame retardant and its influence on the performance of asphalt—A review. Constr. Build. Mater. 2019, 212, 841–861. [Google Scholar] [CrossRef]
- Tan, Y.L.; Sun, L.; Shao, S.C.; Fu, J.P.; Peng, Z.H. Synthesis and Characterization of Melamine Halogen Acid Salts and its Application as Flame Retardant. Adv. Mater. Res. 2013, 750–752, 1087–1090. [Google Scholar] [CrossRef]
- Jin, X.D. Preparation of Novel Phosphorus/Nitrogen/Sulfur Based Flame Retardants and Their Application in Bio-Based Polymer. Ph.D. Thesis, Beijing University of Chemical Technology, Beijing, China, 2018. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2019&filename=1018323756.nh&v=5K3udd3tXdgHcg1JpxJz%25mmd2F166Lcn82dCsx66vUOyb43r1HNYmKFVMNwFqdtvB4p7D (accessed on 28 May 2018).
- Qian, G.; Yu, H.; Gong, X.; Zheng, W. Effect of Phosphorus Slag Powder on Flammability Properties of Asphalt. J. Mater. Civ. Eng. 2019, 31, 04019280. [Google Scholar] [CrossRef]
- Wu, B.; Huang, Z.Y.; Zhu, K. Investigation on the Combustion Process and Flame Retardant Performance of Asphalt with Metal Hydroxides. Adv. Mater. Res. 2014, 1065–1069, 749–754. [Google Scholar] [CrossRef]
- Yu, J.Y.; Cong, P.L.; Wu, S.P. Investigation of the properties of asphalt and its mixtures containing flame retardant modifier. Constr. Build. Mater. 2009, 23, 2277–2282. [Google Scholar] [CrossRef]
- Xu, T.; Wang, H.; Huang, X.; Li, G. Inhibitory action of flame retardant on the dynamic evolution of asphalt pyrolysis volatiles. Fuel 2013, 105, 757–763. [Google Scholar] [CrossRef]
- Qin, X.; Zhu, S.; Chen, S.; Deng, K. The mechanism of flame and smoke retardancy of asphalt mortar containing composite flame retardant material. Constr. Build. Mater. 2013, 41, 852–856. [Google Scholar] [CrossRef]
- Wang, W.; Wei, R.X.; Meng, Q.Y.; Liu, S.Y. Experimental Research on Flame Retardant Performance of Flame Retardant Asphalt and Mixture. Highway 2015, 60, 173–177. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=GLGL201503039&v=EoN6vUvyKXVo0wT2DX4iDUW1DlmJ%25mmd2Bn%25mmd2BxMAsZGzR1zbFz%25mmd2FoMd1wgAeWPXuAcRMSUu (accessed on 25 March 2015).
- Fu, Q.L.; Wei, J.G.; Peng, W.G.; Jin, L. Performance and Flame Retardant Mechanism of Coordinated Flame Retardant Asphalt with DBDPE and Sb2O3. China J. Highw. Transp. 2020, 33, 44–55. [Google Scholar] [CrossRef]
- Lin, T.Q.; Zhang, R.Z.; Ning, H.Y.; Yuan, M. On Flame Retardant Performance of Intumescent Asphalt Flame Retardant. J. Chongqing Jiaotong Univ. 2011, 30, 948–951+988. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Lan, B.W.; Ji, L.; Sang, Y.F. Modified Techniques of Commonly-Used Flame-Retardant Asphalt in Asphalt Pavement Tunnel. J. Chongqing Jiaotong Univ. 2009, 28, 711–714, 719. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=CQJT200904019&v=doDTRrznFyebdsYBVIIZnY5eAr3r3nsj%25mmd2BaUAj9vT8ThQGP60JnvBteP4qq5thsqe (accessed on 15 August 2009).
- Bonati, B.; Merusi, F.; Bochicchio, G.; Tessadri, B.; Polacco, G.; Filippi, S.; Giuliani, F. Effect of nanoclay and conventional flame retardants on asphalt mixtures fire reaction. Constr. Build. Mater. 2013, 47, 990–1000. [Google Scholar] [CrossRef]
- Bourbigot, S.; Cerin, O.; Duquesne, S.; Clavel, N. Flame retardancy of bitumen: A calorimetry study. J. Fire Sci. 2012, 31, 112–130. [Google Scholar] [CrossRef]
- Shen, A.Q.; Su, Y.X.; Yang, X.L.; Wang, H.; Zhao, W.D. Influencing of compounding flame retardants with ATH/MMT on performance of asphalt mixture. J. Chang’an Univ. 2020, 40, 1–9. [Google Scholar] [CrossRef]
- Liang, Y.S.; Yu, J.Y.; Li, W.Z.; Yao, T.T. Preparation and Properties of Flame-retardant Bitumen with Aluminium ’Trihydroxide/Montmorillonite. J. Wuhan Univ. Technol. 2013, 35, 38–42. [Google Scholar] [CrossRef]
- Zhu, K.; Wang, Y.; Tang, D.; Wang, Q.; Li, H.; Huang, Y.; Huang, Z.; Wu, K. Flame-Retardant Mechanism of Layered Double Hydroxides in Asphalt Binder. Materials 2019, 12, 801. [Google Scholar] [CrossRef] [Green Version]
- Shen, A.; Wu, H.; Guo, Y.; Yang, X.; He, Z.; Li, Y. Effect of Layered Double Hydroxide on Rheological and Flame-Retardant Properties of Styrene-Butadiene-Styrene–Modified Asphalt. J. Mater. Civ. Eng. 2021, 33, 04020454. [Google Scholar] [CrossRef]
- Li, M.; Pang, L.; Chen, M.; Xie, J.; Liu, Q. Effects of Aluminum Hydroxide and Layered Double Hydroxide on Asphalt Fire Resistance. Materials 2018, 11, 1939. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.W. Combined Retarding of Asphalt Based on Mechanism of Components Separation. Ph.D. Thesis, Southeast University, Nanjing, China, 2017. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2018&filename=1018041084.nh&v=j0ceT9x87HManm6%25mmd2BoHvBbueGaDJ3mwWWECrVZRpOnCXs4JAsp0nme0%25mmd2F5jEBML%25mmd2BOX (accessed on 6 June 2017).
- Li, L.L.; Wu, Z.H.; Jiang, S.S.; Zhang, S.D.; Lu, S.Y.; Chen, W.P.; Sun, B.; Zhu, M.F. Effect of halloysite nanotubes on thermal and flame retardant properties of polyamide 6/melamine cyanurate composites. Polym. Compos. 2015, 36, 892–896. [Google Scholar] [CrossRef]
- Garcia-Garcia, D.; Garcia-Sanoguera, D.; Fombuena, V.; Lopez-Martinez, J.; Balart, R. Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Appl. Clay Sci. 2018, 162, 487–498. [Google Scholar] [CrossRef]
- Liu, L.; Han, S.J.; Zhang, S.; Jin, H.Y.; Zhou, L. Preparation and properties of synergistic flame retardant nylon 66 with aluminium diethylphosphinate and halloysite nanotubes. Acta Mater. Compos. Sin. 2020, 37, 2386–2393. [Google Scholar] [CrossRef]
- Lyu, J.S.N.; Di, K.Y.; Cai, P.L.; Chen, X.T. Effects of halloysite nanotubes and 2-carboxyethyl phenylphosphonic acid on the flame retardant and mechanical properties of epoxy resin. Acta Mater. Compos. Sin. 2020, 38, 120–128. [Google Scholar] [CrossRef]
- Tan, Y.; He, Z.; Li, X.; Jiang, B.; Li, J.; Zhang, Y. Research on the Flame Retardancy Properties and Mechanism of Modified Asphalt with Halloysite Nanotubes and Conventional Flame Retardant. Materials 2020, 13, 4509. [Google Scholar] [CrossRef] [PubMed]
- Chelladurai, S.J.S.; Murugan, K.; Ray, A.P.; Upadhyaya, M.; Narasimharaj, V.; Gnanasekaran, S. Optimization of process parameters using response surface methodology: A review. Mater. Today: Proc. 2021, 37, 1301–1304. [Google Scholar] [CrossRef]
- Eskandari, S.; Etemadifar, Z. Biocompatibility and radioprotection by newly characterized melanin pigment and its production from Dietzia schimae NM3 in optimized whey medium by response surface methodology. Ann. Microbiol. 2021, 71, 1–13. [Google Scholar] [CrossRef]
- Mao, Y.; Yu, S.; Li, P.; Liu, G.; Ouyang, S.; Zhu, Z.; Zhang, P. A novel magnesium-rich tricalcium aluminate for simultaneous removal of ammonium and phosphorus: Response surface methodology and mechanism investigation. Environ. Res. 2021, 195, 110719. [Google Scholar] [CrossRef]
- Mazumder, P.; Pm, A.; Jyoti; Khwairakpam, M.; Mishra, U.; Kalamdhad, A.S. Enhancement of soil physico-chemical properties post compost application: Optimization using Response Surface Methodology comprehending Central Composite Design. J. Environ. Manag. 2021, 289, 112461. [Google Scholar] [CrossRef]
- Wang, J.W.; Wang, W. Response Surface Based Multi-objective Optimization of Basalt Fiber Reinforced Foamed Concrete. Mater. Rep. 2019, 33, 4092–4097. [Google Scholar] [CrossRef]
- Guo, P.; Cao, Z.; Chen, S.; Chen, C.; Liu, J.; Meng, J. Application of Design-Expert Response Surface Methodology for the Optimization of Recycled Asphalt Mixture with Waste Engine Oil. J. Mater. Civ. Eng. 2021, 33, 04021075. [Google Scholar] [CrossRef]
- Rafiq, W.; Napiah, M.; Habib, N.Z.; Sutanto, M.H.; Alaloul, W.S.; Khan, M.I.; Musarat, M.A.; Memon, A.M. Modeling and design optimization of reclaimed asphalt pavement containing crude palm oil using response surface methodology. Constr. Build. Mater. 2021, 291, 123288. [Google Scholar] [CrossRef]
- Rezaifar, O.; Hasanzadeh, M.; Gholhaki, M. Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using Response Surface Method. Constr. Build. Mater. 2016, 123, 59–68. [Google Scholar] [CrossRef]
- Standard Test Method for Penetration of Bituminous Materials; ASTM International: West Conshohocken, PA, USA, 2020.
- Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus); ASTM International: West Conshohocken, PA, USA, 2020.
- Standard Test Method for Ductility of Asphalt Materials; ASTM International: West Conshohocken, PA, USA, 2017.
- Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index); ASTM International: West Conshohocken, PA, USA, 2019.
- Standard Test Method for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR); ASTM International: West Conshohocken, PA, USA, 2016.
- Standard Method of Test for Flash and Fire Points by Cleveland Open Cup; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2015.
- Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2016.
- Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2008.
- Xu, T.; Huang, X.; Zhao, Y. Investigation into the properties of asphalt mixtures containing magnesium hydroxide flame retardant. Fire Saf. J. 2011, 46, 330–334. [Google Scholar] [CrossRef]
- Xing, X.G.; Xu, J.Y.; Bai, E.L.; Zhu, J.S.; Wang, Y.X. Response Surface Research of the Preparation of Nano-Fe2O3 Cement-based Composite. Mater. Rep. 2018, 32, 1367–1372. [Google Scholar] [CrossRef]
Type | Penetration/(0.1 mm) | Softening Point/°C | Ductility/cm | Ignition Point/°C |
---|---|---|---|---|
Modified asphalt | 51.9 | 71.5 | 32 | 360 |
standard | 40–60 | ≥60 | ≥20 (5 °C) | ≥230 |
Test standard | ASTM D 5 [37] | ASTM D 36 [38] | ASTM D 113 [39] | AASHTO T 48 [42] |
No. | Flame Retardant Material | Level One wt% | Level Two wt% | Level Three wt% |
---|---|---|---|---|
A | ATH | 3 | 4 | 5 |
B | ADP | 3 | 4 | 5 |
C | HNTs | 0 | 1 | 2 |
Test No. | SBS Modified Asphalt | ATH Dosage (wt%) | ADP Dosage (wt%) | HNTs Dosage (wt%) | Physical Properties | Flame Retardant Properties | OD | |||
---|---|---|---|---|---|---|---|---|---|---|
Penetration 0.1 mm | Softening Point °C | Ductility cm | LOI % | IP °C | ||||||
SBS | 100 | 0 | 0 | 0 | 51.9 | 71.5 | 35 | 18.1% | 412 | - |
1 | 100 | 4 | 3 | 0 | 45.0 | 81.5 | 23 | 23.0% | 426 | 0 |
2 | 100 | 5 | 5 | 1 | 43.2 | 89.5 | 27 | 26.2% | 463 | 0.563451 |
3 | 100 | 5 | 3 | 1 | 46.3 | 87.8 | 29 | 24.1% | 455 | 0.511977 |
4 | 100 | 3 | 4 | 2 | 44.3 | 92.2 | 32 | 25.1% | 448 | 0 |
5 | 100 | 3 | 3 | 1 | 49.3 | 88.3 | 29 | 23.6% | 440 | 0.358685 |
6 | 100 | 3 | 5 | 1 | 48.3 | 86.5 | 27 | 25.5% | 441 | 0.523098 |
7 | 100 | 4 | 5 | 2 | 45.7 | 90.1 | 33 | 25.9% | 448 | 0.490542 |
8 | 100 | 5 | 4 | 2 | 44.5 | 88.7 | 31 | 24.9% | 461 | 0.581393 |
9 | 100 | 4 | 3 | 2 | 46.3 | 89.6 | 32 | 23.1% | 442 | 0.241295 |
10 | 100 | 4 | 4 | 1 | 43.9 | 87.1 | 24 | 24.5% | 438 | 0.397381 |
11 | 100 | 4 | 4 | 1 | 45.1 | 87.9 | 25 | 24.8% | 437 | 0.394954 |
12 | 100 | 4 | 4 | 1 | 44.8 | 87.6 | 26 | 24.3% | 439 | 0.404865 |
13 | 100 | 4 | 5 | 0 | 45.5 | 82.6 | 22 | 24.3% | 429 | 0.316098 |
14 | 100 | 5 | 4 | 0 | 46.7 | 85.1 | 18 | 23.5% | 432 | 0 |
15 | 100 | 4 | 4 | 1 | 44.2 | 87.3 | 26 | 24.3% | 430 | 0.313444 |
16 | 100 | 3 | 4 | 0 | 49.5 | 79.2 | 26 | 23.3% | 424 | 0 |
17 | 100 | 4 | 4 | 1 | 44.6 | 86.9 | 25 | 23.9% | 428 | 0.25705 |
Model | Source | Sum of Square | df | Mean Square | F Value | p Value | Statistical Significance |
---|---|---|---|---|---|---|---|
Model | 52.66 | 11 | 4.79 | 18.97 | 0.0023 | significant | |
Lack of Fit | 0.35 | 1 | 0.35 | 1.56 | 0.2798 | not significant | |
Model | 169.28 | 9 | 18.81 | 117.61 | <0.0001 | significant | |
Lack of Fit | 0.49 | 3 | 0.16 | 1.03 | 0.4693 | not significant | |
Model | 236.01 | 9 | 26.22 | 12.20 | 0.0017 | significant | |
Lack of Fit | 12.25 | 3 | 4.08 | 5.83 | 0.0607 | not significant |
Model | R2 | C.V. % | Adeq Precision |
---|---|---|---|
Ypen | 0.97 | 1.12 | 14.85 |
Ysp | 0.99 | 0.46 | 41.57 |
YD | 0.94 | 5.48 | 11.89 |
Source | Sum of Square | df | Mean Square | F Value | p Value | Statistical Significance | |
---|---|---|---|---|---|---|---|
Model | 0.00 | 3 | 0.00 | 17.05 | <0.0001 | significant | |
Lack of Fit | 0.00 | 9 | 0.00 | 2.53 | 0.1925 | not significant | |
Model | 2049.24 | 9 | 227.69 | 9.18 | 0.0040 | significant | |
Lack of Fit | 72.50 | 3 | 24.17 | 0.96 | 0.4947 | not significant |
Model | R2 | C.V. % | Adeq Precision |
---|---|---|---|
YLOI | 0.93 | 1.33 | 14.62 |
YSFP | 0.92 | 1.13 | 9.75 |
Source | Sum of Square | df | Mean Square | F Value | p Value | Statistical Significance |
---|---|---|---|---|---|---|
Model | 0.62 | 9 | 0.07 | 8.82 | 0.0045 | significant |
A | 0.08 | 1 | 0.08 | 9.61 | 0.0173 | |
B | 0.08 | 1 | 0.08 | 9.77 | 0.0167 | |
C | 0.12 | 1 | 0.12 | 15.91 | 0.0053 | |
AB | 0.00 | 1 | 0.00 | 0.41 | 0.5432 | |
AC | 0.08 | 1 | 0.08 | 10.82 | 0.0133 | |
BC | 0.00 | 1 | 0.00 | 0.14 | 0.7165 | |
A2 | 0.00 | 1 | 0.00 | 0.05 | 0.8306 | |
B2 | 0.07 | 1 | 0.07 | 8.58 | 0.0220 | |
C2 | 0.20 | 1 | 0.20 | 25.56 | 0.0015 | |
Lack of Fit | 0.04 | 3 | 0.01 | 2.91 | 0.1646 | not significant |
= 0.9189 |
Type | R@0.1 | R@3.2 | Jnr@0.1 | Jnr@3.2 |
---|---|---|---|---|
MA | 27.4101 | 5.9187 | 1.8 | 2.5 |
CFRMA | 32.1751 | 8.8390 | 1.2 | 1.7 |
HNTs-CFRMA | 30.2018 | 7.8829 | 0.4 | 0.7 |
Type | /mm·N−1 | /N·mm | |||
---|---|---|---|---|---|
MA | 131.7 | 13.90 | 0.1055 | 1830.63 | 36.05 |
CFRMA | 160.1 | 11.99 | 0.0749 | 1919.60 | 68.59 |
HNTs-CFRMA | 145.5 | 12.65 | 0.0869 | 1840.55 | 61.48 |
Index | −24 °C | −18 °C | −12 °C | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Asphalt | ||||||||||
S | m | m/S | S | m | m/S | S | m | m/S | ||
MA | 345 | 0.258 | 0.000748 | 172 | 0.311 | 0.001808 | 96 | 0.396 | 0.004125 | |
CFRMA | 432 | 0.206 | 0.000477 | 231 | 0.265 | 0.001147 | 143 | 0.337 | 0.002357 | |
HNTs-CFRMA | 369 | 0.237 | 0.000642 | 195 | 0.299 | 0.001533 | 112 | 0.385 | 0.003438 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; He, Z.; Yu, L.; He, L.; Shen, Z. Multi-Objective Optimization and Performance Characterization of Asphalt Modified by Nanocomposite Flame-Retardant Based on Response Surface Methodology. Materials 2021, 14, 4367. https://doi.org/10.3390/ma14164367
Li J, He Z, Yu L, He L, Shen Z. Multi-Objective Optimization and Performance Characterization of Asphalt Modified by Nanocomposite Flame-Retardant Based on Response Surface Methodology. Materials. 2021; 14(16):4367. https://doi.org/10.3390/ma14164367
Chicago/Turabian StyleLi, Jiaqi, Zhaoyi He, Le Yu, Lian He, and Zuzhen Shen. 2021. "Multi-Objective Optimization and Performance Characterization of Asphalt Modified by Nanocomposite Flame-Retardant Based on Response Surface Methodology" Materials 14, no. 16: 4367. https://doi.org/10.3390/ma14164367
APA StyleLi, J., He, Z., Yu, L., He, L., & Shen, Z. (2021). Multi-Objective Optimization and Performance Characterization of Asphalt Modified by Nanocomposite Flame-Retardant Based on Response Surface Methodology. Materials, 14(16), 4367. https://doi.org/10.3390/ma14164367