Study on the Effect of Ni Addition on the Microstructure and Properties of NiTi Alloy Coating on AISI 316 L Prepared by Laser Cladding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Laser Cladding Process
2.3. Characterization
3. Results and Discussion
3.1. Macrostructure of the Cladding Layer
3.2. Microstructure of the Cladding Layer
3.3. Analysis of Properties of Cladding Layer
3.3.1. Microhardness
3.3.2. Wear Resistance
4. Conclusions
- (1)
- The addition of Ni changed the microstructure and phase composition of the 55 NiTi coating by building a Ni-rich surrounding in the molten pool, which makes all NiTi2 phases turn into Ni3Ti. As a result, on the one hand, there was no more NiTi2 phase found in the 55 NiTi + 5 Ni coating; on the other hand, compared to 55 NiTi coating, the Ni addition increased the proportion of Ni3Ti phase by nearly 10% in the 55 NiTi + 5 Ni coating.
- (2)
- The difference between the phase composition of the two coatings has a noticeable impact on the coating surface properties. The addition of Ni raised the surface hardness of 55 NiTi + 5 Ni coating to 830 HV, which was 8% higher than that of 55 NiTi coating and four times harder than the substrate. In addition, the wear resistance has also been improved obviously, the mass loss during friction test reduced 13% compared to 55 NiTi coating.
- (3)
- The enhancement of the coating surface properties is mainly attributed to the increase of second phase proportion and the solid solution strengthening effect caused by the addition of Ni.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buehler, W.J.; Gilfrich, J.V.; Wiley, R. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 1963, 34, 1475–1477. [Google Scholar] [CrossRef]
- Jackson, C.; Wagner, H.; Wasilewski, R. 55-Nitinol-The Alloy with a Memory: It’s Physical Metallurgy Properties, and Applications; NASA SP-5110; NASA Special Publication: Washington, DC, USA, 1972; p. 5110. [Google Scholar]
- Dellacorte, C.; Pepper, S.; Noebe, R.; Hull, D.; Glennon, G. Intermetallic nickel-titanium alloys for oil-lubricated bearing applications. Power Transm. Eng. 2009, 8, 26–35. [Google Scholar]
- Es-Souni, M.; Es-Souni, M.; Fischer-Brandies, H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal. Bioanal. Chem. 2005, 381, 557–567. [Google Scholar] [CrossRef]
- Elahinia, M.; Shayesteh Moghaddam, N.; Taheri Andani, M.; Amerinatanzi, A.; Bimber, B.A.; Hamilton, R.F. Fabrication of NiTi through additive manufacturing: A review. Prog. Mater. Sci. 2016, 83, 630–663. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.P.; Miranda, R.M.; Braz Fernandes, F.M. Welding and Joining of NiTi Shape Memory Alloys: A Review. Prog. Mater. Sci. 2017, 88, 412–466. [Google Scholar] [CrossRef]
- Hassan, M.; Mehrpouya, M.; Dawood, S. Review of the machining difficulties of nickel-titanium based shape memory alloys. Proc. Appl. Mech. Mater. 2014, 564, 533–537. [Google Scholar] [CrossRef]
- Ian Gibson, I.G. Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: Berlin, Germany, 2015. [Google Scholar]
- Vilar, R. Laser cladding. J. Laser Appl. 1999, 11, 64–79. [Google Scholar] [CrossRef]
- Lian, G.; Zhang, H.; Zhang, Y.; Yao, M.; Huang, X.; Chen, C. Computational and Experimental Investigation of Micro-Hardness and Wear Resistance of Ni-Based Alloy and TiC Composite Coating Obtained by Laser Cladding. Materials 2019, 12, 793. [Google Scholar] [CrossRef] [Green Version]
- Norhafzan, B.; Aqida, S.N.; Chikarakara, E.; Brabazon, D. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder. Appl. Phys. A 2016, 122, 384. [Google Scholar] [CrossRef]
- Liu, F.; Mao, Y.; Lin, X.; Zhou, B.; Qian, T. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding. Opt. Laser Technol. 2016, 83, 140–147. [Google Scholar] [CrossRef]
- Adams, D.P.; Rodriguez, M.A.; McDonald, J.P.; Bai, M.M.; Jones, E.; Brewer, L.; Moore, J.J. Reactive Ni/Ti nanolaminates. J. Appl. Phys. 2009, 106, 093505. [Google Scholar] [CrossRef]
- Ma, Y.; Li, H.; Yang, L.P.; Hu, A.M. Microstructures and Reaction Properties of Ti/Ni, Ti/Al and Ni/Al Multilayer Films. J. Nano Res. 2018, 54, 22–34. [Google Scholar] [CrossRef]
- Zhang, C.H.; Li, S.; Qi, L.; Ren, Y.H.; Zhang, S.; Wang, M.C. Fabrication of NiTi Alloy Coating on 2Cr13 Stainless Steel by Laser Cladding. Adv. Mater. Res. 2011, 418–420, 242–245. [Google Scholar] [CrossRef]
- Lepule, M.L.; Obadele, B.A.; Andrews, A.; Olubambi, P.A. Corrosion and wear behaviour of ZrO 2 modified NiTi coatings on AISI 316 stainless steel. Surf. Coat. Technol. 2015, 261, 21–27. [Google Scholar] [CrossRef]
- Fu, B.; Feng, K.; Li, Z. Study on the effect of Cu addition on the microstructure and properties of NiTi alloy fabricated by laser cladding. Mater. Lett. 2018, 220, 148–151. [Google Scholar] [CrossRef]
- Okamoto, H.; Okamoto, H. Phase Diagrams for Binary Alloys; ASM International: Materials Park, OH, USA, 2000; Volume 44. [Google Scholar]
- Hornbuckle, B.C.; Xiao, X.Y.; Noebe, R.D.; Martens, R.; Weaver, M.L.; Thompson, G.B. Hardening behavior and phase decomposition in very Ni-rich Nitinol alloys. Mater. Sci. Eng. A 2015, 639, 336–344. [Google Scholar] [CrossRef]
- DellaCorte, C.; Moore, L.E. The effect of indenter ball radius on the static load capacity of the superelastic 60NiTi for rolling element bearings. In Proceedings of the 2014 Society of Tribologists and Lubrication Engineers (STLE) Annual Meeting, Orlando, FL, USA, 18–22 May 2014. [Google Scholar]
- Stanford, M.K.; Thomas, F.; DellaCorte, C. Processing Issues for Preliminary Melts of the Intermetallic Compound 60-NiTiNOL; Volume Report NASA/TM-2012-216044; National Aeronautics and Space Administration, Glenn Research Center, NASA Glenn Research Center: Cleveland, OH, USA, 2012. [Google Scholar]
- Khanlari, K.; Ramezani, M.; Kelly, P. 60NiTi: A Review of Recent Research Findings, Potential for Structural and Mechanical Applications, and Areas of Continued Investigations. Trans. Indian Inst. Met. 2017, 71, 781–799. [Google Scholar] [CrossRef]
- Gaumann, M.; Bezencon, C.; Canalis, P.; Kurz, W. Single-crystal laser deposition of superalloys: Processing-microstructure maps. Acta Mater. 2001, 49, 1051–1062. [Google Scholar] [CrossRef]
- Stanford, M.K. Hardness and Microstructure of Binary and Ternary Nitinol Compounds; Volume Report NASA/TM-2016-218946; National Aeronautics and Space Administration, Glenn Research Center: Cleveland, OH, USA, 2016. [Google Scholar]
- Zhang, H.; Pan, Y.; He, Y.-Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater. Des. 2011, 32, 1910–1915. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Luo, Z.; Gao, F.; Li, L. Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology. Mater. Des. 2017, 133, 91–108. [Google Scholar] [CrossRef]
- Zhou, S.; Xiong, Z.; Dai, X.; Liu, J.; Zhang, T.; Wang, C. Microstructure and oxidation resistance of cryomilled NiCrAlY coating by laser induction hybrid rapid cladding. Surf. Coat. Technol. 2014, 258, 943–949. [Google Scholar] [CrossRef]
- Carvalho, R.V. Laser alloying of zine with aluminum: Solidification structure. Surf. Coat. Technol. 1997, 1997, 9. [Google Scholar] [CrossRef]
- Cacciamani, G.; De Keyzer, J.; Ferro, R.; Klotz, U.E.; Lacaze, J.; Wollants, P. Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems. Intermetallics 2006, 14, 1312–1325. [Google Scholar] [CrossRef] [Green Version]
- Pouquet, J.; Miranda, R.M.; Quintino, L.; Williams, S. Dissimilar laser welding of NiTi to stainless steel. Int. J. Adv. Manuf. Technol. 2011, 61, 205–212. [Google Scholar] [CrossRef]
- Li, B.-Y.; Rong, L.-J.; Li, Y.-Y. Stress–strain behavior of porous Ni–Ti shape memory intermetallics synthesized from powder sintering. Intermetallics 2000, 8, 643. [Google Scholar] [CrossRef]
- Barin, I. N-NpO3*H2O. In Thermochemical Data of Pure Substances, 3rd ed.; VCH: Weinheim, Germany, 1995; pp. 1080–1237. [Google Scholar]
- Locci, A.M.; Orrù, R.; Cao, G.; Munir, Z.A. Field-activated pressure-assisted synthesis of NiTi. Intermetallics 2003, 11, 555–571. [Google Scholar] [CrossRef]
- Bozzolo, G.; Noebe, R.D.; Mosca, H.O. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf. J. Alloy. Compd. 2005, 389, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Khanlari, K.; Ramezani, M.; Kelly, P.; Cao, P.; Neitzert, T. Mechanical and microstructural characteristics of as-sintered and solutionized porous 60NiTi. Intermetallics 2018, 100, 32–43. [Google Scholar] [CrossRef]
- Liu, R.; Li, D. Modification of Archard’s equation by taking account of elastic/pseudoelastic properties of materials. Wear 2001, 251, 956–964. [Google Scholar] [CrossRef]
Powders | Ni | Ti | Fe | Nb | Co | C | Si | O |
---|---|---|---|---|---|---|---|---|
Pure Ni | Bal. | - | 0.003 | - | 0.020 | 0.020 | 0.003 | 0.006 |
55 NiTi | 56.46 | Bal. | 0.005 | 0.010 | 0.005 | 0.005 | - | 0.037 |
Fe | Cr | Ni | Mo | Mn | Si | P | C | S |
---|---|---|---|---|---|---|---|---|
Bal. | 16.32 | 10.12 | 2.04 | 0.92 | 0.34 | 0.026 | 0.016 | 0.015 |
Cladding Layer | h/μm | H/μm | Dilution |
---|---|---|---|
55 NiTi | 1105 | 1425 | 0.43 |
55 NiTi + 5 Ni | 1162 | 1869 | 0.38 |
Coating | Region | Ni (at. %) | Ti (at. %) | Fe (at. %) | Cr (at. %) | Major Phase |
---|---|---|---|---|---|---|
55 NiTi | 1 | 26.21 | 28.59 | 35.94 | 9.26 | NiTi |
2 | 56.59 | 22.74 | 15.32 | 5.35 | Ni3Ti | |
3 | 33.12 | 27.63 | 30.66 | 8.59 | Ni3Ti + NiTi | |
4 | 17.72 | 13.80 | 49.67 | 18.82 | NiTi | |
5 | 17.21 | 25.08 | 46.58 | 11.13 | Ni3Ti + NiTi2 | |
55 NiTi + 5 Ni | 6 | 30.15 | 28.03 | 33.69 | 8.13 | NiTi |
7 | 57.67 | 24.73 | 13.86 | 3.74 | Ni3Ti | |
8 | 36.28 | 28.14 | 27.55 | 8.03 | Ni3Ti + NiTi | |
9 | 25.49 | 25.39 | 40.14 | 8.99 | NiTi | |
10 | 43.40 | 18.21 | 28.62 | 9.77 | Ni3Ti |
Sample | Friction Coefficient | Weight Loss (mg) |
---|---|---|
SS316 Substrate | 0.804 | 17.0 |
with 55 NiTi Coating | 0.514 | 12.6 |
with 55 NiTi + 5 Ni Coating | 0.501 | 10.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Du, Z.; Hu, Z. Study on the Effect of Ni Addition on the Microstructure and Properties of NiTi Alloy Coating on AISI 316 L Prepared by Laser Cladding. Materials 2021, 14, 4373. https://doi.org/10.3390/ma14164373
Feng Y, Du Z, Hu Z. Study on the Effect of Ni Addition on the Microstructure and Properties of NiTi Alloy Coating on AISI 316 L Prepared by Laser Cladding. Materials. 2021; 14(16):4373. https://doi.org/10.3390/ma14164373
Chicago/Turabian StyleFeng, Yuqiang, Zexu Du, and Zhengfei Hu. 2021. "Study on the Effect of Ni Addition on the Microstructure and Properties of NiTi Alloy Coating on AISI 316 L Prepared by Laser Cladding" Materials 14, no. 16: 4373. https://doi.org/10.3390/ma14164373
APA StyleFeng, Y., Du, Z., & Hu, Z. (2021). Study on the Effect of Ni Addition on the Microstructure and Properties of NiTi Alloy Coating on AISI 316 L Prepared by Laser Cladding. Materials, 14(16), 4373. https://doi.org/10.3390/ma14164373