Incorporation of Arginine to Commercial Orthodontic Light-Cured Resin Cements—Physical, Adhesive, and Antibacterial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orthodontic Resin Cement Manipulation
2.2. Shear Bond Strength (SBS) Test
2.3. Adhesive Remnant Index (ARI) Test
2.4. Ultimate Tensile Strength (UTS) Test
2.5. Antibacterial Test
2.6. Scanning Electron Microscope (SEM) Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Proffit, W.R.; Fields, H.W.; Moray, L.J. Prevalence of malocclusion and orthodontic treatment need in the United States: Estimates from the NHANES III survey. Int. J. Adult Orthod. Orthognath. Surg. 1998, 13, 97–106. [Google Scholar]
- Asiri, S.N.; Tadlock, L.; Buschang, P.H. The prevalence of clinically meaningful malocclusion among US adults. Orthod. Craniofacial Res. 2019, 22, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Krooks, L.; Pirttiniemi, P.; Kanavakis, G.; Lähdesmäki, R. Prevalence of malocclusion traits and orthodontic treatment in a Finnish adult population. Acta Odontol. Scand. 2016, 74, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, G.; Vena, F.; Negri, P.; Pagano, S.; Barilotti, C.; Paglia, L.; Colombo, S.; Orso, M.; Cianetti, S. Worldwide prevalence of malocclusion in the different stages of dentition: A systematic review and meta-analysis. Eur. J. Paediatr. Dent. 2020, 21, 115–122. [Google Scholar] [PubMed]
- Ahn, S.-J.; Lim, B.-S.; Lee, S.-J. Surface characteristics of orthodontic adhesives and effects on streptococcal adhesion. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 489–495. [Google Scholar] [CrossRef]
- Julien, K.C.; Buschang, P.H.; Campbell, P.M. Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod. 2013, 83, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Albhaisi, Z.; Al-Khateeb, S.N.; Abu Alhaija, E.S. Enamel demineralization during clear aligner orthodontic treatment compared with fixed appliance therapy, evaluated with quantitative light-induced fluorescence: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 594–601. [Google Scholar] [CrossRef]
- Venkatachalapathy, S.; Sundararaj, D.; Tandon, A.; Pereira, A. Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J. Int. Soc. Prev. Community Dent. 2015, 5, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Enaia, M.; Bock, N.; Ruf, S. White-spot lesions during multibracket appliance treatment: A challenge for clinical excellence. Am. J. Orthod. Dentofac. Orthop. 2011, 140, e17–e24. [Google Scholar] [CrossRef] [Green Version]
- Kerbusch, A.E.G.; Kuijpers-Jagtman, A.M.; Mulder, J.; Van Der Sanden, W.J.M. Methods used for prevention of white spot lesion development during orthodontic treatment with fixed appliances. Acta Odontol. Scand. 2011, 70, 564–568. [Google Scholar] [CrossRef]
- Hu, H.; Feng, C.; Jiang, Z.; Wang, L.; Shrestha, S.; Su, X.; Shu, Y.; Ge, L.; Lai, W.; Hua, F.; et al. Effectiveness of remineralising agents in prevention and treatment of orthodontically induced white spot lesions: A protocol for a systematic review incorporating network meta-analysis. Syst. Rev. 2019, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popolo, A.; Adesso, S.; Pinto, A.; Autore, G.; Marzocco, S. l-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 2014, 46, 2271–2286. [Google Scholar] [CrossRef]
- Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of Dental Caries in Primary and Permanent Teeth in Children and Young Adults. J. Clin. Microbiol. 2008, 46, 1407–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, M.R.; Paster, B.J.; Leys, E.J.; Moeschberger, M.L.; Kenyon, S.G.; Galvin, J.L.; Boches, S.K.; Dewhirst, F.E.; Griffen, A.L. Molecular Analysis of Bacterial Species Associated with Childhood Caries. J. Clin. Microbiol. 2002, 40, 1001–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, E.L.; Leys, E.J.; Gasparovich, S.R.; Firestone, N.D.; Schwartzbaum, J.; Janies, D.A.; Asnani, K.; Griffen, A.L. Bacterial 16S Sequence Analysis of Severe Caries in Young Permanent Teeth. J. Clin. Microbiol. 2010, 48, 4121–4128. [Google Scholar] [CrossRef] [Green Version]
- Van Houte, J.; Lopman, J.; Kent, R. The Predominant Cultivable Flora of Sound and Carious Human Root Surfaces. J. Dent. Res. 1994, 73, 1727–1734. [Google Scholar] [CrossRef]
- Lingström, P.; Van Ruyven, F.O.J.; Van Houte, J.; Kent, R. The pH of Dental Plaque in its Relation to Early Enamel Caries and Dental Plaque Flora in Humans. J. Dent. Res. 2000, 79, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Crielaard, W.; Zaura, E.; A Schuller, A.; Huse, S.M.; Montijn, R.C.; Keijser, B.J.F. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genom. 2011, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, A.M.; Machado, C.; Rivera, L.E.; Wolff, M.; Kleinberg, I. The inhibitory effect of an arginine bicarbonate/calcium carbonate CaviStat-containing dentifrice on the development of dental caries in Venezuelan school children. J. Clin. Dent. 2005, 16, 63–70. [Google Scholar]
- Acevedo, A.M.; Montero, M.; Rojas-Sanchez, F.; Machado, C.; Rivera, L.E.; Wolff, M.; Kleinberg, I. Clinical evaluation of the ability of CaviStat in a mint confection to inhibit the development of dental caries in children. J. Clin. Dent. 2008, 19, 1–8. [Google Scholar]
- Geraldeli, S.; Soares, E.F.; Alvarez, A.J.; Farivar, T.; Shields, R.C.; Sinhoreti, M.A.C.; Nascimento, M.M. A new arginine-based dental adhesive system: Formulation, mechanical and anti-caries properties. J. Dent. 2017, 63, 72–80. [Google Scholar] [CrossRef]
- Mandall, N.A.; Hickman, J.; Macfarlane, T.V.; Mattick, R.C.; Millett, D.T.; Worthington, H.V. Adhesives for fixed orthodontic brackets. Cochrane Database Syst Rev. 2018, 2018, CD002282. [Google Scholar] [CrossRef] [Green Version]
- Trimpeneers, L.M.; Verbeeck, R.M.; Dermaut, L.R. Long-term fluoride release of some orthodontic bonding resins: A laboratory study. Dent Mater. 1998, 14, 142–149. [Google Scholar] [CrossRef]
- Naoum, S.; Ellakwa, A.; Martin, F.; Swain, M. Fluoride release, recharge and mechanical property stability of various fluoride-containing resin composites. Oper Dent. 2011, 36, 422–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Hu, Y.; Huang, F.; Xiao, Y. Quaternary ammonium compounds in dental restorative materials. Dent Mater. J. 2018, 30, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Weir, M.D.; Chen, J.; Xu, H.H. Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dent Mater. 2014, 30, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadirian, H.; Geramy, A.; Najafi, F.; Heidari, S.; Golshahi, H. Effect of Quaternary Ammonium Salt on Shear Bond Strength of Orthodontic Brackets to Enamel. J. Dent Tehran. 2017, 14, 159–164. [Google Scholar] [PubMed]
- Hiraishi, N.; Yiu, C.; King, N.; Tay, F.; Pashley, D. Chlorhexidine release and water sorption characteristics of chlorhexidine-incorporated hydrophobic/hydrophilic resins. Dent. Mater. 2008, 24, 1391–1399. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, M.; Alvarez, A.; Huang, X.; Browngardt, C.; Jenkins, R.; Sinhoreti, M.; Ribeiro, A.; Dilbone, D.; Richards, V.; Garrett, T.; et al. Metabolic Profile of Supragingival Plaque Exposed to Arginine and Fluoride. J. Dent. Res. 2019, 98, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.; Liu, Y.; Kalra, R.; Perry, S.; Adewumi, A.; Xu, X.; Primosch, R.; Burne, R. Oral Arginine Metabolism May Decrease the Risk for Dental Caries in Children. J. Dent. Res. 2013, 92, 604–608. [Google Scholar] [CrossRef]
- Nascimento, M.M. Potential Uses of Arginine in Dentistry. Adv. Dent. Res. 2018, 29, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, I.R.; Von Fraunhofer, J.A. Direct Bonding of Orthodontic Brackets—a Comparative Study of Adhesives. Br. J. Orthod. 1976, 3, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Bishara, S.E.; VonWald, L.; Laffoon, J.F.; Warren, J.J. The effect of repeated bonding on the shear bond strength of a composite resin orthodontic adhesive. Angle Orthod. 2000, 70, 435–441. [Google Scholar] [CrossRef]
- Yadala, C.; Gaddam, R.; Arya, S.; Baburamreddy, K.V.; Raju, V.R.; Varma, P.K. Comparison of Shear Bond Strength of Three Self-etching Adhesives: An In-Vitro Study. J. Int. Oral. Health 2015, 7, 53–57. [Google Scholar]
- Albaladejo, A.; Montero, J.; De Diego, R.G.; López-Valverde, A. Effect of adhesive application prior to bracket bonding with flowable composites. Angle Orthod. 2011, 81, 716–720. [Google Scholar] [CrossRef]
- Bitoun, J.P.; Liao, S.; Yao, X.; Xie, G.; Wen, Z.T. The Redox-Sensing Regulator Rex Modulates Central Carbon Metabolism, Stress Tolerance Response and Biofilm Formation by Streptococcus mutans. PLoS ONE 2012, 7, e44766. [Google Scholar] [CrossRef]
- Türkkahraman, H.; Sayin, M.O.; Bozkurt, F.Y.; Yetkin, Z.; Kaya, S.; Onal, S. Archwire ligation techniques, microbial colonization, and periodontal status in orthodontically treated patients. Angle Orthod. 2005, 75, 231–236. [Google Scholar] [CrossRef]
- Bitoun, J.P.; Wen, Z.T. Transcription factor Rex in regulation of pathophysiology in oral pathogens. Mol. Oral. Microbiol. 2016, 31, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Baka, Z.M.; Basciftci, F.A.; Arslan, U. Effects of 2 bracket and ligation types on plaque retention: A quantitative microbiologic analysis with real-time polymerase chain reaction. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.M.; Burne, R.A. Caries Prevention by Arginine Metabolism in Oral Biofilms: Translating Science into Clinical Success. Curr. Oral. Health Rep. 2014, 1, 79–85. [Google Scholar] [CrossRef]
- VanWuyckhuyse, B.C.; Perinpanayagam, H.E.R.; Bevacqua, D.; Raubertas, R.E.; Billings, R.J.; Bowen, W.H.; Tabak, L.A. Association of Free Arginine and Lysine Concentrations in Human Parotid Saliva with Caries Experience. J. Dent. Res. 1995, 74, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Margolis, H.; Duckworth, J.; Moreno, E. Composition of Pooled Resting Plaque Fluid from Caries-free and Caries-susceptible Individuals. J. Dent. Res. 1988, 67, 1468–1475. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.; Weisenstein, P.R. The Effect of Sugar Solutions on pH of Dental Plaques from Caries-susceptible and Caries-free Individuals. J. Dent. Res. 1965, 44, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Stephan, R.M. Intra-Oral Hydrogen-Ion Concentrations Associated With Dental Caries Activity. J. Dent. Res. 1944, 23, 257–266. [Google Scholar] [CrossRef]
- Nascimento, M.M.; Gordan, V.; Garvan, C.W.; Browngardt, C.M.; Burne, R. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral. Microbiol. Immunol. 2009, 24, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, A.; Da Silva, J.G.; Berbet, F.M.; Da Silva, S.M.; Rodrigues, B.L.; Beraldo, H.; Melo, M.N.; Frézard, F.; Demicheli, C. Novel Triphenylantimony(V) and Triphenylbismuth(V) Complexes with Benzoic Acid Derivatives: Structural Characterization, in Vitro Antileishmanial and Antibacterial Activities and Cytotoxicity against Macrophages. Molecules 2014, 19, 6009–6030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group/Material | Composition | Application |
---|---|---|
Orthocem control | Bis-GMA, TEGDMA, phosphated methacrylic monomers, canforquinone, tertiary amine, silicon dioxide | Cement application and light curing for 10 s on each side of the bracket. |
Orthocem + Arginine (OA) | Bis-GMA, TEGDMA, phosphated methacrylic monomers, canforquinone, tertiary amine, silicon dioxide + 2.5 wt% of arginine | Cement application and light curing for 10 s on each side of the bracket. |
Transbond XT control (TC) | Primer: Bis-GMA and TEGDMA, triphenylantimony, CQ, DMAEMA Resin: Bis-GMA, TEGDMA, BIS-EMA quartz, silicon dioxide, canforquinone, DMAEMA, DPI | Active primer application for 10 sec, cement application and light curing for 10 s on each side of the bracket. |
Transbond XT + Arginine (TA) | Primer: Bis-GMA and TEGDMA, triphenylantimony, CQ, DMAEMA Resin: Bis-GMA, TEGDMA, BIS-EMA quartz, silicon dioxide, canforquinone, DMAEMA, DPI + 2.5 wt% of arginine | Active primer application for 10 sec, cement application and light curing for 10 s on each side of the bracket. |
Orthodontic Cement | Control | Arginine |
---|---|---|
Transbond | 20.57 (6.73) a,A | 17.52 (3.70) a,A |
Orthocem | 15.17 (4.43) b,A | 14.54 (6.53) b,A |
Control | Arginine | Pooling Mean | |
---|---|---|---|
Transbond XT | 57.01 (10.66) | 50.54 (11.68) | 53.78 (11.37) A |
Orthocem | 39.5 (8.99) | 45.84 (13.92) | 42.67 (11.86) B |
Pooling Mean | 48.25 a (9.35) | 48.19 a |
Material | Control | Arginine |
---|---|---|
Transbond XT | 0.31 b,A | 0.24 b,A |
Orthocem | 1.04 a,A | 0.5 a,B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geraldeli, S.; Maia Carvalho, L.d.A.; de Souza Araújo, I.J.; Guarda, M.B.; Nascimento, M.M.; Bertolo, M.V.L.; Di Nizo, P.T.; Sinhoreti, M.A.C.; McCarlie, V.W., Jr. Incorporation of Arginine to Commercial Orthodontic Light-Cured Resin Cements—Physical, Adhesive, and Antibacterial Properties. Materials 2021, 14, 4391. https://doi.org/10.3390/ma14164391
Geraldeli S, Maia Carvalho LdA, de Souza Araújo IJ, Guarda MB, Nascimento MM, Bertolo MVL, Di Nizo PT, Sinhoreti MAC, McCarlie VW Jr. Incorporation of Arginine to Commercial Orthodontic Light-Cured Resin Cements—Physical, Adhesive, and Antibacterial Properties. Materials. 2021; 14(16):4391. https://doi.org/10.3390/ma14164391
Chicago/Turabian StyleGeraldeli, Saulo, Lucas de Almeida Maia Carvalho, Isaac Jordão de Souza Araújo, Maurício Bottene Guarda, Marcelle M. Nascimento, Marcus Vinícius Loureiro Bertolo, Paolo Túlio Di Nizo, Mário Alexandre Coelho Sinhoreti, and V. Wallace McCarlie, Jr. 2021. "Incorporation of Arginine to Commercial Orthodontic Light-Cured Resin Cements—Physical, Adhesive, and Antibacterial Properties" Materials 14, no. 16: 4391. https://doi.org/10.3390/ma14164391
APA StyleGeraldeli, S., Maia Carvalho, L. d. A., de Souza Araújo, I. J., Guarda, M. B., Nascimento, M. M., Bertolo, M. V. L., Di Nizo, P. T., Sinhoreti, M. A. C., & McCarlie, V. W., Jr. (2021). Incorporation of Arginine to Commercial Orthodontic Light-Cured Resin Cements—Physical, Adhesive, and Antibacterial Properties. Materials, 14(16), 4391. https://doi.org/10.3390/ma14164391