Novel Methodology for Experimental Characterization of Micro-Sandwich Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Specimen Preparation
3. Statistical Analysis: Weibull Distribution
4. Results and Discussion
4.1. Mechanical Properties of HybrixTM
4.1.1. Load Case 1: Tensile Loading Normal to the Sandwich
4.1.2. Load Case 2: Compressive Loading Normal to the Sandwich
4.1.3. Load Case 3: Out-of-Plane Shear Loading
4.1.4. Load Case 4: 30 Degrees Off-Axis Normal
4.1.5. Load Case 5: Loading 60 Degrees
4.2. Statistical Analysis
4.3. Summary of Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, J.C.; Sullivan, J.L.; Burnham, A.; Elgowainy, A. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions. Environ. Sci. Technol. 2015, 49, 12535–12542. [Google Scholar] [CrossRef] [PubMed]
- Kawajiri, K.; Kobayashi, M.; Sakamoto, K. Lightweight materials equal lightweight greenhouse gas emissions?: A historical analysis of greenhouse gases of vehicle material substitution. J. Clean. Prod. 2020, 253, 119805. [Google Scholar] [CrossRef]
- Sellitto, A.; Riccio, A.; Magno, G.; D’errico, G.; Monsurrò, G.; Cozzolino, A. Feasibility study on the redisgn of a metallic car hood by using composite materials. Int. J. Automot. Technol. 2020, 21, 471–479. [Google Scholar] [CrossRef]
- Palkowski, H.; Lange, G. Austenitic Sandwich Materials in the Focus of Research. In Proceedings of the 2nd International Conference Deformation Processing and Structure of Materials, Belgrade, Serbia, 26–28 May 2005. [Google Scholar]
- Hara, D.; Özgen, G.O. Investigation of Weight Reduction of Automotive Body Structures with the Use of Sandwich Materials. Transp. Res. Procedia 2016, 14, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Wei, L. Introducing CFRP as an alternative material for engine hood to achieve better pedestrian safety using finite element modeling. Thin Walled Struct. 2016, 99, 97–108. [Google Scholar] [CrossRef]
- Riccio, A.; Raimondo, A.; Saputo, S.; Sellitto, A.; Battaglia, M.; Petrone, G. A numerical study on the impact behaviour of natural fibres made honeycomb cores. Compos. Struct. 2018, 202, 909–916. [Google Scholar] [CrossRef]
- Balakrishnan, B.S.; Hart-Rawung, T.; Buhl, J.; Seidlitz, H.; Bambach, M. Impact and damage behaviour of FRP-metal hybrid laminates made by the reinforcement of glass fibers on 22MnB5 metal surface. Compos. Sci. Technol. 2020, 187, 107949. [Google Scholar] [CrossRef]
- Hammarberg, S.; Kajberg, J.; Larsson, S.; Jonsén, P. Ultra high strength steel sandwich for lightweight applications. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Schneider, C.; Kazemanhvazi, S.; Russell, B.; Zenkert, D.; Deshpande, V. Impact response of ductile self-reinforced composite corrugated sandwich beams|Elsevier Enhanced Reader. Compos. Part B 2016, 99, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Hammarberg, S.; Larsson, S.; Kajberg, J.; Jonsén, P. Numerical evaluation of lightweight ultra high strength steel sandwich for energy absorption. SN Appl. Sci. 2020, 2, 1–16. [Google Scholar] [CrossRef]
- Najibi, A.; Ghazifard, P.; Alizadeh, P. Numerical crashworthiness analysis of a novel functionally graded foam-filled tube. J. Sandw. Struct. Mater. 2021, 23, 1635–1661. [Google Scholar] [CrossRef]
- Bhart, B.T.; Wang, T.G.; Gibson, L.J. Microsandwich honeycomb. SAMPE J. 1989, 25, 43–46. [Google Scholar]
- Mohr, D.; Straza, G. Development of formable all-metal sandwich sheets for automotive applications. Adv. Eng. Mater. 2005, 7, 243–246. [Google Scholar] [CrossRef]
- Tanco, J.S.; Nielsen, C.V.; Chergui, A.; Zhang, W.; Bay, N. Weld nugget formation in resistance spot welding of new lightweight sandwich material. Int. J. Adv. Manuf. Technol. 2015, 80, 1137–1147. [Google Scholar] [CrossRef]
- Takalkar, A.S.; Mailan Chinnapandi, L.B. Deep drawing process at the elevated temperature: A critical review and future research directions. CIRP J. Manuf. Sci. Technol. 2019, 27, 56–67. [Google Scholar] [CrossRef]
- Palkowski, H.; Lange, G. Environmental Impacts of Salt Tide in Shatt Al-Arab-Basra/Iraq View project 1—Step processing of metal/polymer/metal sandwich structures View project. IOSR J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 35–43. [Google Scholar]
- Kim, K.J.; Kim, D.; Choi, S.H.; Chung, K.; Shin, K.S.; Barlat, F.; Oh, K.H.; Youn, J.R. Formability of AA5182/polypropylene/AA5182 sandwich sheets. J. Mater. Process. Technol. 2003, 139, 1–7. [Google Scholar] [CrossRef]
- Burchitz, I.; Boesenkool, R.; van der Zwaag, S.; Tassoul, M. Highlights of designing with Hylite—A new material concept. Mater. Des. 2005, 26, 271–279. [Google Scholar] [CrossRef]
- Carradò, A.; Faerber, J.; Niemeyer, S.; Ziegmann, G.; Palkowski, H. Metal/polymer/metal hybrid systems: Towards potential formability applications. Compos. Struct. 2011, 93, 715–721. [Google Scholar] [CrossRef]
- Hufenbach, W.; Jaschinski, J.; Weber, T.; Weck, D. Numerical and experimental investigations on HYLITE sandwich sheets as an alternative sheet metal. Arch. Civ. Mech. Eng. 2008, 8, 67–80. [Google Scholar] [CrossRef]
- Kami, A.; Comsa, D.S.; Banabic, D.; Mollaei Dariani, B.; Comsa, D.S.; Sadough Vanini, A.; Liewald, M. An Experimental Study on the Formability of a Vibration Damping Sandwich Sheet (Bondal). Rom. Acad. Ser. 2017, 18, 281–290. [Google Scholar]
- Mohr, D.; Wierzbicki, T. Crushing of soft-core sandwich profiles: Experiments and analysis. Int. J. Mech. Sci. 2003, 45, 253–271. [Google Scholar] [CrossRef]
- Kolodziejska, J.A.; Roper, C.S.; Yang, S.S.; Carter, W.B.; Jacobsen, A.J. Research Update: Enabling ultra-thin lightweight structures: Microsandwich structures with microlattice cores. APL Mater. 2015, 3, 050701. [Google Scholar] [CrossRef]
- Parsa, M.H.; Ettehad, M.; Nasher, S.; Ahkami, A. FLD determination of al 3105/polypropylene/al 3105 sandwich sheet using numerical calculation and experimental investigations. Int. J. Mater. Form. 2009, 2, 407–410. [Google Scholar] [CrossRef]
- Sokolova, O.A.; Kühn, M.; Palkowski, H. Deep drawing properties of lightweight steel/polymer/steel sandwich composites. Arch. Civ. Mech. Eng. 2012, 12, 105–112. [Google Scholar] [CrossRef]
- Liu, J.G.; Xue, W. Formability of AA5052/polyethylene/AA5052 sandwich sheets. Trans. Nonferrous Met. Soc. China 2013, 23, 964–969. [Google Scholar] [CrossRef]
- Logesh, K.; Bupesh Raja, V.K. Formability analysis for enhancing forming parameters in AA8011/PP/AA1100 sandwich materials. Int. J. Adv. Manuf. Technol. 2015, 93, 113–120. [Google Scholar] [CrossRef]
- Pimentel, A.; Alves, J.; Merendeiro, N.; Oliveira, D. Hybrix: Experimental characterization of a micro-sandwich sheet. J. Mater. Process. Technol. 2016, 234, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Moreira, R.A.; Alves de Sousa, R.J.; Valente, R.A. A solid-shell layerwise finite element for non-linear geometric and material analysis. Compos. Struct. 2010, 92, 1517–1523. [Google Scholar] [CrossRef]
- Kordkheili, S.A.H.; Soltani, Z. A layerwise finite element for geometrically nonlinear analysis of composite shells. Compos. Struct. 2018, 186, 355–364. [Google Scholar] [CrossRef]
- Jabareen, M.; Mtanes, E. A solid-shell Cosserat point element for the analysis of geometrically linear and nonlinear laminated composite structures. Finite Elem. Anal. Des. 2018, 142, 61–80. [Google Scholar] [CrossRef]
- Kordkheili, S.A.H.; Khorasani, R. On the geometrically nonlinear analysis of sandwich shells with viscoelastic core: A layerwise dynamic finite element formulation. Compos. Struct. 2019, 230, 111388. [Google Scholar] [CrossRef]
- Pimentel, A.M.F.; Luís De Carvalho, J.; Alves, M.; Seabra, N.D.M.M.; Soares, T. Modelling strategies and FEM approaches to characterize micro-sandwich sheets with unknown core properties. Int. J. Mater. Form. 2019, 12, 649–673. [Google Scholar] [CrossRef]
- Barbero, E.; Fernández-Sáez, J.; Navarro, C. Statistical analysis of the mechanical properties of composite materials. Compos. Part B Eng. 2000, 31, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Waloddi Weibull, B. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Quinn, J.B.; Quinn, G.D. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X.; Pan, N.; Postle, R. Weibull analysis of the tensile behavior of fibers with geometrical irregularities. J. Mater. Sci. 2002, 37, 1401–1406. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Mathias, J.D.; Toussaint, E.; Grédiac, M. Characterizing the variance of mechanical properties of sunflower bark for biocomposite applications. BioResources 2014, 9, 922–937. [Google Scholar] [CrossRef] [Green Version]
- Aarseth, K.A.; Prestløkken, E. Mechanical properties of feed pellets: Weibull analysis. Biosyst. Eng. 2003, 84, 349–361. [Google Scholar] [CrossRef]
- Liu, C.; Liu, F.; Song, J.; Ma, F.; Wang, D.; Zhang, G. On the measurements of individual particle properties via compression and crushing. J. Rock Mech. Geotech. Eng. 2021, 13, 377–389. [Google Scholar] [CrossRef]
- Santos, C.D.; Coutinho, I.F.; Amarante, J.E.V.; Alves, M.F.R.P.; Coutinho, M.M.; Moreira da Silva, C.R. Mechanical properties of ceramic composites based on ZrO2 co-stabilized by Y2O3–CeO2 reinforced with Al2O3 platelets for dental implants. J. Mech. Behav. Biomed. Mater. 2021, 116, 104372. [Google Scholar] [CrossRef] [PubMed]
- Madjoubi, M.A.; Bousbaa, C.; Hamidouche, M.; Bouaouadja, N. Weibull Statistical Analysis of the Mechanical Strength of a Glass Eroded by Sand Blasting. J. Eur. Ceram. Soc. 1999, 19, 2957–2962. [Google Scholar] [CrossRef]
- Klein, C.A. Characteristic strength, Weibull modulus, and failure probability of fused silica glass. Opt. Eng. 2009, 48, 113401. [Google Scholar] [CrossRef] [Green Version]
- Kajberg, J.; Lindkvist, G. Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int. J. Solids Struct. 2004, 41, 3439–3459. [Google Scholar] [CrossRef]
- Bergman, B. On the estimation of the Weibull modulus. J. Mater. Sci. Lett. 1984, 3, 689–692. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M. Cellular Solids. MRS Bull. 1997, 28, 429–450. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.J. Mechanical Behavior of Metallic Foams. Annu. Rev. Mater. Sci. 2000, 30, 191–227. [Google Scholar] [CrossRef]
E [GPa] | [GPa] | t [mm] | ||||
---|---|---|---|---|---|---|
Core | Polyamid + Adhesive | 0.6 | ||||
Skins | Carbon steel, DC04 | 200 | 0.3 | 0.2 | 1 | 0.3 |
Load Case | Loading Type |
---|---|
1 | Transverse tension, normal to the micro-sandwich. |
2 | Transverse compression, normal to the micro-sandwich. |
3 | Out–of–plane shear. |
4 | Off–axis loading, 30°. |
5 | Off–axis loading, 60°. |
Parameters/Curves | Description |
---|---|
Equivalent Young’s modulus in tension (normal to the sandwich). | |
Maximum normal stress in tension. | |
vs. | Stress–strain curve (tension) |
Equivalent Young’s modulus in compression (normal to the sandwich). | |
Maximum normal stress in compression. | |
vs. | Stress–strain curve (compression) |
G | Equivalent Shear modulus (out-of-plane) |
Maximum shear stress. | |
vs. | Stress–strain curve (shear) |
Stiffness for 30° off-axis loading | |
Maximum force for 30° off-axis loading | |
vs. | Force vs. displacement for 30° off-axis loading |
Stiffness for 60° off-axis loading | |
Maximum force for 60° off-axis loading | |
vs. | Force vs. displacement for 60° off-axis loading |
Parameters | Description |
---|---|
Equivalent Young’s modulus in tension | |
Maximum stress in tensions | |
Equivalent Young’s modulus in compression | |
Maximum stress in compression | |
G | Equivalent shear modulus |
Maximum shear stress | |
Stiffness 30° off-axis loading | |
Maximum force 30° off-axis loading | |
Stiffness 60° off-axis loading | |
Maximum force 60° off-axis loading |
Load Case | Parameters | R | |
---|---|---|---|
1 | [MPa] | 950 | 0.26 |
[MPa] | 20.4 | ||
2 | [MPa] | 252 | 0.37 |
[MPa] | 79 | ||
3 | G [MPa] | 850 | 0.83 |
[MPa] | 18 | ||
4 | [kN/mm] | 535 | 0.82 |
[kN] | 8.6 | ||
5 | [kN/mm] | 417 | 0.51 |
[kN] | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammarberg, S.; Kajberg, J.; Larsson, S.; Moshfegh, R.; Jonsén, P. Novel Methodology for Experimental Characterization of Micro-Sandwich Materials. Materials 2021, 14, 4396. https://doi.org/10.3390/ma14164396
Hammarberg S, Kajberg J, Larsson S, Moshfegh R, Jonsén P. Novel Methodology for Experimental Characterization of Micro-Sandwich Materials. Materials. 2021; 14(16):4396. https://doi.org/10.3390/ma14164396
Chicago/Turabian StyleHammarberg, Samuel, Jörgen Kajberg, Simon Larsson, Ramin Moshfegh, and Pär Jonsén. 2021. "Novel Methodology for Experimental Characterization of Micro-Sandwich Materials" Materials 14, no. 16: 4396. https://doi.org/10.3390/ma14164396
APA StyleHammarberg, S., Kajberg, J., Larsson, S., Moshfegh, R., & Jonsén, P. (2021). Novel Methodology for Experimental Characterization of Micro-Sandwich Materials. Materials, 14(16), 4396. https://doi.org/10.3390/ma14164396