Characterisation of Microparticle Waste from Dental Resin-Based Composites
Abstract
:1. Introduction
2. Materials and Methods
- In-house fabricated RBC (Control) specifically designed and fabricated with quantifiable constituents that were used for both the direct placement (Direct-Control) and the CAD/CAM samples (CAD/CAM-Control) (Table 2). Fabrication of the control composite followed an established protocol used by the research group in previous RBC experimental studies [36].
- Commercially available direct and indirect RBC materials (COM). A direct placement RBC (Direct-COM) (Filtek Supreme XTE, dentine shade A3; 3M Oral Care, Irwindale, CA, USA) was chosen as this material as it contained all the monomers of the control RBC. CAD/CAM RBC (CAD/CAM-COM) (Lava Ultimate size 14L shade A3; 3M Oral Care, Irwindale, CA, USA) was also used to represent CAD/CAM RBC materials. It was not possible to obtain the full constituent data for the resin matrix of Lava Ultimate, although it is reported that this material contains UDMA as the principal monomer that is solely heat-polymerised and has 79 wt.% of zirconia-silica nanofillers [37]. Filtek Supreme XTE and Lava Ultimate RBCs were selected as being representative of their class in the market containing common constituents of current state-of-the-art RBC materials. The monomer component of Filtek Supreme XTE consists of BisGMA, UDMA, TEGDMA and ethoxylated BisGMA (BisEMA6). The fillers in Filtek Supreme XTE are a combination of non-agglomerated/non-aggregated 20 nm silica filler, non-agglomerated/non-aggregated 4 to 11 nm zirconia filler and aggregated zirconia/silica cluster filler (comprised of 20 nm silica and 4 to 11 nm zirconia particles).
2.1. Preparation of Direct Placement RBC Samples
2.2. Preparation of CAD/CAM RBC Samples
2.3. Characterisation of RBC Samples
2.4. Scanning Electron Microscopy (SEM)
2.5. Particle Size Analysis
2.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.7. Potentiometric Titrations
3. Results
3.1. SEM
3.2. Particle Size Analysis
3.3. FTIR
3.4. Potentiometric Titrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- do Sul, J.A.I.; Costa, M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef]
- Limonta, G.; Mancia, A.; Benkhalqui, A.; Bertolucci, C.; Abelli, L.; Fossi, M.C.; Panti, C. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish. Sci. Rep. 2019, 9, 15775. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Lusher, A.L.; McHugh, M.; Thompson, R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013, 67, 94–99. [Google Scholar] [CrossRef]
- Carney Almroth, B.M.; Åström, L.; Roslund, S.; Petersson, H.; Johansson, M.; Persson, N.K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. 2018, 25, 1191–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment. A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, S.; Kakonyi, G.; Moharamzadeh, K.; Thornton, S.F.; Martin, N. The environmental impact of dental amalgam and resin-based composite materials. Br. Dent. J. 2018, 224, 542–548. [Google Scholar] [CrossRef]
- Schmalz, G.; Hickel, R.; van Landuyt, K.L.; Reichl, F.X. Nanoparticles in dentistry. Dent. Mater. 2017, 33, 1298–1314. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.L. Use of Epoxy Resins in Restorative Materials. J. Dent. Res. 1956, 35, 360–369. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Snauwaert, J.; De Munck, J.; Peumans, M.; Yoshida, Y.; Poitevin, A.; Coutinho, E.; Suzuki, K.; Lambrechts, P.; Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785. [Google Scholar] [CrossRef] [PubMed]
- Moharamzadeh, K.; Brook, I.M.; Van Noort, R. Biocompatibility of resin-based dental materials. Materials (Basel) 2009, 2, 514–548. [Google Scholar] [CrossRef] [Green Version]
- Staples, C.A.; Dorn, P.B.; Klecka, G.M.; O’Block, S.T.; Harris, L.R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998, 36, 2149–2173. [Google Scholar] [CrossRef]
- Trasande, L.; Attina, T.M.; Blustein, J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. J. Am. Med. Assoc. 2012, 308, 1113–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz-de-Toro, M.; Markey, C.; Wadia, P.R.; Luque, E.H.; Rubin, B.S.; Sonnenschein, C.; Soto, A.M. Perinatal exposure to Bisphenol A alters peripubertal mammary gland development in mice. Endocrinology 2005, 146, 4138–4147. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Liu, S. Low-Dose Bisphenol A Exposure: A Seemingly Instigating Carcinogenic Effect on Breast Cancer. Adv. Sci. 2017, 4, 1600248. [Google Scholar] [CrossRef]
- Borges, B.C.D.; Bezerra, G.V.G.; De Almeida Mesquita, J.; Silva, T.R.S.F.; Alves-Júnior, C.; De Assunção Pinheiro, I.V.; Braz, R.; Montes, M.A.J.R. Filler morphology of resin-based low-viscosity materials and surface properties after several photoactivation times. Acta Odontol. Scand. 2013, 71, 215–222. [Google Scholar] [CrossRef]
- Ruse, N.D.; Sadoun, M.J. Resin-composite blocks for dental CAD/CAM applications. J. Dent. Res. 2014, 93, 1232–1234. [Google Scholar] [CrossRef] [Green Version]
- Alshali, R.Z.; Silikas, N.; Satterthwaite, J.D. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent. Mater. 2013, 29, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002, 23, 1819–1829. [Google Scholar] [CrossRef]
- Nandini, S. Indirect resin composites. J. Conserv. Dent. 2010, 13, 184–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaga, T.; Sato, Y.; Akagawa, Y.; Taira, M.; Wakasa, K.; Yamaki, M. Hardness and fracture toughness of four commercial visible light-cured composite resin veneering materials. J. Oral. Rehabil. 1995, 22, 857–863. [Google Scholar] [CrossRef]
- Heintze, S.D.; Ilie, N.; Hickel, R.; Reis, A.; Loguercio, A.; Rousson, V. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials—A systematic review. Dent. Mater. 2017, 33, 101–114. [Google Scholar] [CrossRef]
- Beck, F.; Lettner, S.; Graf, A.; Bitriol, B.; Dumitrescu, N.; Bauer, P.; Moritz, A.; Schedle, A. Survival of direct resin restorations in posterior teeth within a 19-year period (1996–2015): A meta-analysis of prospective studies. Dent. Mater. 2015, 31, 958–985. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Rousson, V. Clinical effectiveness of direct class II restorations-a meta-analysis. J. Adhes. Dent. 2012, 14, 407–431. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L.; Condon, J.R. Rate of elution of leachable components from composite. Dent. Mater. 1990, 6, 282–287. [Google Scholar] [CrossRef]
- Cokic, S.M.; Duca, R.C.; Godderis, L.; Hoet, P.H.; Seo, J.W.; Van Meerbeek, B.; Van Landuyt, K.L. Release of monomers from composite dust. J. Dent. 2017, 60, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Gewert, B.; Plassmann, M.M.; Macleod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.A.; Finer, Y. Biostable, antidegradative and antimicrobial restorative systems based on host-biomaterials and microbial interactions. Dent. Mater. 2019, 35, 36–52. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Zheng, Y.; Yanful, E.K.; Bassi, A.S. A review of plastic waste biodegradation. Crit. Rev. Biotechnol. 2005, 25, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Putzeys, E.; De Nys, S.; Cokic, S.M.; Duca, R.C.; Vanoirbeek, J.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L. Long-term elution of monomers from resin-based dental composites. Dent. Mater. 2019, 35, 477–485. [Google Scholar] [CrossRef]
- Bourbia, M.; Ma, D.; Cvitkovitch, D.G.; Santerre, J.P.; Finer, Y. Cariogenic bacteria degrade dental resin composites and adhesives. J. Dent. Res. 2013, 92, 989–994. [Google Scholar] [CrossRef]
- Wada, H.; Tarumi, H.; Imazato, S.; Narimatsu, M.; Ebisu, S. In vitro estrogenicity of resin composites. J. Dent. Res. 2004, 83, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Wataha, J.C.; Hanks, C.T.; Strawn, S.E.; Fat, J.C. Cytotoxicity of components of resins and other dental restorative materials. J. Oral. Rehabil. 1994, 21, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urcan, E.; Scherthan, H.; Styllou, M.; Haertel, U.; Hickel, R.; Reichl, F.X. Induction of DNA double-strand breaks in primary gingival fibroblasts by exposure to dental resin composites. Biomaterials 2010, 31, 2010–2014. [Google Scholar] [CrossRef]
- Moharamzadeh, K.; Brook, I.M.; Scutt, A.M.; Thornhill, M.H.; Van Noort, R. Mucotoxicity of dental composite resins on a tissue-engineered human oral mucosal model. J. Dent. 2008, 36, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Mainjot, A.K.; Dupont, N.M.; Oudkerk, J.C.; Dewael, T.Y.; Sadoun, M.J. From Artisanal to CAD/CAM Blocks: State of the Art of Indirect Composites. J. Dent. Res. 2016, 95, 487–495. [Google Scholar] [CrossRef]
- Shortcill, A.C.; Palin, W.M.; Burtscher, P. Refractive index mismatch and monomer reactivity influence composite curing depth. J. Dent. Res. 2008, 87, 84–88. [Google Scholar] [CrossRef]
- Fein, J.B.; Boily, J.F.; Yee, N.; Gorman-Lewis, D.; Turner, B.F. Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim. Cosmochim. Acta 2005, 69, 1123–1132. [Google Scholar] [CrossRef]
- Ojeda, J.J.; Romero-González, M.E.; Bachmann, R.T.; Edyvean, R.G.J.; Banwart, S.A. Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir 2008, 24, 4032–4040. [Google Scholar] [CrossRef]
- Daughney, C.J.; Fein, J.B. The effect of ionic strength on the adsorption of H+, Cd2+, Pb2+ and Cu2+ by Bacillus subtilis and Bacillus licheniformis: A surface complexation model. J. Colloid Interface Sci. 1998, 198, 53–77. [Google Scholar] [CrossRef]
- Haas, J.R.; Dichristina, T.J.; Wade, R. Thermodynamics of U(VI) sorption onto Shewanella putrefaciens. Chem. Geol. 2001, 180, 33–54. [Google Scholar] [CrossRef]
- Ngwenya, B.T.; Sutherland, I.W.; Kennedy, L. Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains. Appl. Geochem. 2003, 18, 527–538. [Google Scholar] [CrossRef]
- Plette, A.C.C.; van Riemsdijk, W.H.; Benedetti, M.F.; van der Wal, A. pH Dependent Charging Behavior of Isolated Cell Walls of a Gram-Positive Soil Bacterium. J. Colloid Interface Sci. 1995, 173, 354–363. [Google Scholar] [CrossRef]
- Dittrich, M.; Sibler, S. Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy. J. Colloid Interface Sci. 2005, 286, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.F.; Fein, J.B. Protofit: A program for determining surface protonation constants from titration data. Comput. Geosci 2006, 32, 1344–1356. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Mintenig, S.M.; Int-Veen, I.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017, 108, 365–372. [Google Scholar] [CrossRef]
- Conley, R.T. Infrared Spectroscopy; Allyn and Bacon: Boston, MA, USA, 1972. [Google Scholar]
- Mastalerz, M.; Bustin, R.M. Application of reflectance micro-Fourier transform-infrared spectrometry in studying coal macerals-comparison with other Fourier-transform infrared techniques. Fuel 1995, 74, 536–542. [Google Scholar] [CrossRef]
- Chalmers, J.M.; Everall, N.J. FTIR, FT-Raman and chemometrics: Applications to the analysis and characterisation of polymers. Trac-Trends Anal. Chem. 1996, 15, 18–25. [Google Scholar] [CrossRef]
- Mastalerz, M.; Bustin, R.M. Application of reflectance micro-Fourier transform infrared analysis to the study of coal macerals: An. example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada. Int. J. Coal Geol. 1996, 32, 55–67. [Google Scholar] [CrossRef]
- Skoog, D.A.; Leary, J.J. Principles of Instrumental Analysis; Saunders College Publishing: Philadelphia, PA, USA, 1992. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B., 5th ed.; John Wiley & Sons: New York, NY, USA, 1997; p. 384. [Google Scholar]
- Jiang, W.; Saxena, A.; Song, B.; Ward, B.B.; Beveridge, T.J.; Myneni, S.C.B. Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 2004, 20, 11433–11442. [Google Scholar] [CrossRef]
- Söderholm, K.J.; Zigan, M.; Ragan, M.; Fischlschweiger, W.; Bergman, M. Hydrolytic degradation of dental composites. J. Dent. Res. 1984, 63, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, G.; Ottobelli, M.; Ionescu, A.C.; Paolone, G.; Gherlone, E.; Ferracane, J.L.; Brambilla, E. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures. J. Dent. 2017, 67, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Gieroba, B.; Krysa, M.; Wojtowicz, K.; Wiater, A.; Pleszczyńska, M.; Tomczyk, M.; Sroka-Bartnicka, A. The FT-IR and Raman spectroscopies as tools for biofilm characterization created by cariogenic streptococci. Int. J. Mol. Sci. 2020, 21, 3811. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J. Organophosphorus Chemistry; Penguin: Harmondsworth, UK, 1972. [Google Scholar]
- Fein, J.B.; Daughney, C.J.; Yee, N.; Davis, T.A. A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim Acta 1997, 61, 3319–3328. [Google Scholar] [CrossRef]
- Merroun, M.L.; Nedelkova, M.; Ojeda, J.J.; Reitz, T.; López-Fernández, M.; Arias, J.M.; Romero, M.; Selenska-Pobell, S. Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses. J. Hazard. Mater. 2011, 197, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claessens, J.; van Lith, Y.; Laverman, A.M.; Van Cappellen, P. Acid-base activity of live bacteria: Implications for quantifying cell wall charge. Geochim. Cosmochim. Acta 2006, 70, 267–276. [Google Scholar] [CrossRef]
- Iliadi, A.; Koletsi, D.; Eliades, T.; Eliades, G. Particulate production and composite dust during routine dental procedures. A systematic review with meta-analyses. Materials (Basel) 2020, 31, 2513. [Google Scholar] [CrossRef]
- Gioka, C.; Eliades, T.; Zinelis, S.; Pratsinis, H.; Athanasiou, A.E.; Eliades, G.; Kletsas, D. Characterization and in vitro estrogenicity of orthodontic adhesive particulates produced by simulated debonding. Dent. Mater. 2009, 25, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite-state of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Cokic, S.M.; Asbach, C.; De Munck, J.; Van Meerbeek, B.; Hoet, P.; Seo, J.W.; Van Landuyt, K.L. The effect of water spray on the release of composite nano-dust. Clin. Oral. Investig. 2020, 24, 2403–2414. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Hellack, B.; Van Meerbeek, B.; Peumans, M.; Hoet, P.; Wiemann, M.; Kuhlbusch, T.A.J.; Asbach, C. Nanoparticle release from dental composites. Acta Bio. Mater. 2014, 10, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Van Landuyt, K.L.; Yoshihara, K.; Geebelen, B.; Peumans, M.; Godderis, L.; Hoet, P.; Van Meerbeek, B. Should we be concerned about composite (nano-)dust? Dent. Mater. 2012, 28, 1162–1170. [Google Scholar] [CrossRef]
- Mulligan, S.; Kakonyi, G.; Thornton, S.; Moharamzadeh, K.; Fairburn, A.; Martin, N. The environmental fate of waste microplastics from resin-based dental composites. J. Dent. Res. 2015. Available online: https://iadr.abstractarchives.com/abstract/brit-iadr2015-2314833/the-environmental-fate-of-waste-microplastics-from-resin-based-dental-composite (accessed on 15 September 2015).
- Falyouna, O.; Kakonyi, G.; Mulligan, S.; Fairburn, A.W.; Moharamzadeh, K.; Martin, N.; Thornton, S.F. Behavior of dental composite materials in sterilized and non-sterilized landfill leachate. In Proceedings of the International Exchange and Innovation Conference on Engineering & Sciences (IEICES), Fukuoka, Japan, 18–19 October 2018; Interdisciplinary Graduate School of Engineering Sciences, Kyushu University: Fukuoka, Japan, 2018; pp. 72–76. [Google Scholar]
- Alshali, R.Z.; Salim, N.A.; Sung, R.; Satterthwaite, J.D.; Silikas, N. Analysis of long-term monomer elution from bulk-fill and conventional resin-composites using high performance liquid chromatography. Dent. Mater. 2015, 31, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Van Landuyt, K.L.; Nawrot, T.; Geebelen, B.; De Munck, J.; Snauwaert, J.; Yoshihara, K.; Scheers, H.; Godderis, L.; Hoet, P.; Van Meerbeek, B. How much do resin-based dental materials release? A meta-analytical approach. Dent. Mater. 2011, 27, 723–747. [Google Scholar] [CrossRef]
- Mourouzis, P.; Andreasidou, E.; Samanidou, V.; Tolidis, K. Short-term and long-term release of monomers from newly developed resin-modified ceramics and composite resin CAD/CAM blocks. J. Prosthet. Dent. 2020, 123, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Polydorou, O.; Schmidt, O.C.; Spraul, M.; Vach, K.; Schulz, S.D.; König, A.; Hellwig, E.; Gminski, R. Detection of Bisphenol A in dental wastewater after grinding of dental resin composites. Dent. Mater. 2020, 36, 1009–1018. [Google Scholar] [CrossRef]
- Melzer, D.; Osborne, N.J.; Henley, W.E.; Cipelli, R.; Young, A.; Money, C.; McCormack, P.; Luben, R.; Khaw, K.T.; Wareham, N.J.; et al. Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 2012, 125, 1482–1490. [Google Scholar] [CrossRef] [Green Version]
- Tagg, A.S.; Sapp, M.; Harrison, J.P.; Ojeda, J.J. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging. Anal. Chem. 2015, 12, 6032–6040. [Google Scholar] [CrossRef] [Green Version]
Samples | Clinical Use | Nomenclature | Description |
---|---|---|---|
Control | Direct-Placement RBC | Direct-Control | See Table 2 |
Machined CAD/CAM RBC | CAD/CAM-Control | See Table 2 | |
Commercial | Direct-Placement RBC | Direct-COM | Filtek Supreme XTE, shade A3 (3M Oral Care) |
Machined CAD/CAM RBC | CAD/CAM-COM | Lava Ultimate, size 14L shade A3 (3M Oral Care) |
RBC Component | Role | Percentage |
---|---|---|
BisGMA | Monomer | 8.75 |
UDMA | Monomer | 8.75 |
TEGDMA | Monomer | 7.3 |
Camphorquinone | Photoinitiator | 0.075 |
4-dimethylaminobenzoic acid ethyl ester (DMABE) | Accelerator | 0.075 |
3,5-di-tert-butyl-4-hydroxytoluene (BHT) | Inhibitor | 0.0003 |
2-hydroxy-4-methoxybenzophenone (HMBP) | Photostabiliser | 0.00015 |
Silane treated silica (10–50 μm and 40 nm) | Filler | 75 |
RBC Particulate Sample | Dx 10 | Dx 50 (Median Diameter) | Dx 90 | Span (Dx 90–Dx 10/Dx50) | D [3,2] (Surface Area Mean) | D [4,3] (Volume Mean Diameter) | Specific Surface Area (BET Method) |
---|---|---|---|---|---|---|---|
Direct-COM 120s US agitation | 2.37 μm | 7.13 μm | 27.4 μm | 3.509 | 5.24 μm | 12.7 μm | 1145 m2/kg |
Direct-COM 240s US agitation | 2.22 μm | 6.65 μm | 23.8 μm | 3.247 | 4.86 μm | 10.8 μm | 1234 m2/kg |
Direct-COM 360s US agitation | 2.13 μm | 6.39 μm | 22.6 μm | 3.208 | 4.65 μm | 10.4 μm | 1290 m2/kg |
Direct-Control 120s US agitation | 2.84 μm | 10.0 μm | 47.6 μm | 4.472 | 6.57 μm | 22.9 μm | 912.9 m2/kg |
Direct-Control 240s US agitation | 2.58 μm | 9.52 μm | 39.9 μm | 3.918 | 6.03 μm | 16.5 μm | 994.7 m2/kg |
Direct-Control 360s US agitation | 2.49 μm | 9.55 μm | 40.2 μm | 3.945 | 5.90 μm | 37.1 μm | 1017 m2/kg |
Sample | Ageing | pK1 | pK2 | pK3 | C1 (× 10−4 mol/g) | C2 (× 10−4 mol/g) | C3 (× 10−4 mol/g) | Model a | pHzpc |
---|---|---|---|---|---|---|---|---|---|
Direct-COM | Fresh | 6.54 ± 0.63 | 9.72 ± 0.20 | 4.48 ± 0.31 | 0.056 ± 0.03 | 0.363 ± 0.13 | 0.157 ± 0.19 | NEM | 5.62 ± 0.74 |
Direct-COM | Aged | 7.04 ± 0.19 | 10.08 ± 0.16 | 4.46 ± 0.90 | 0.058 ± 0.02 | 0.320 ± 0.03 | 0.061 ± 0.05 | NEM | 5.72 ± 0.23 |
CAD/CAM-Control | Aged | 6.95 ± 0.41 | 10.08 ± 0.12 | 4.44 ± 1.32 | 0.029 ± 0.02 | 0.162 ± 0.09 | 0.077 ± 0.07 | NEM | 5.88 ± 0.79 |
CAD/CAM-COM | Fresh | 6.21 ± 0.42 | 9.70 ± 0.48 | 3.83 ± 0.49 | 0.035 ± 0.02 | 0.165 ± 0.02 | 0.063 ± 0.01 | NEM | 5.17 ± 0.37 |
Direct-Control | Fresh | 7.65 ± 1.85 | 9.90 ± 0.36 | 5.64 ± 1.09 | 0.083 ± 0.02 | 0.241 ± 0.03 | 0.158 ± 0.11 | NEM | 6.74 ± 1.56 |
Direct-Control | Aged | 7.41 ± 0.78 | 9.78 ± 0.43 | 4.79 ± 0.28 | 0.046 ± 0.03 | 0.292 ± 0.20 | 0.133 ± 0.06 | NEM | 6.35 ± 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulligan, S.; Ojeda, J.J.; Kakonyi, G.; Thornton, S.F.; Moharamzadeh, K.; Martin, N. Characterisation of Microparticle Waste from Dental Resin-Based Composites. Materials 2021, 14, 4440. https://doi.org/10.3390/ma14164440
Mulligan S, Ojeda JJ, Kakonyi G, Thornton SF, Moharamzadeh K, Martin N. Characterisation of Microparticle Waste from Dental Resin-Based Composites. Materials. 2021; 14(16):4440. https://doi.org/10.3390/ma14164440
Chicago/Turabian StyleMulligan, Steven, Jesús J. Ojeda, Gabriella Kakonyi, Steven F. Thornton, Keyvan Moharamzadeh, and Nicolas Martin. 2021. "Characterisation of Microparticle Waste from Dental Resin-Based Composites" Materials 14, no. 16: 4440. https://doi.org/10.3390/ma14164440
APA StyleMulligan, S., Ojeda, J. J., Kakonyi, G., Thornton, S. F., Moharamzadeh, K., & Martin, N. (2021). Characterisation of Microparticle Waste from Dental Resin-Based Composites. Materials, 14(16), 4440. https://doi.org/10.3390/ma14164440