Strain Characterization in Two-Dimensional Crystals
Abstract
:1. Introduction
2. Methods
2.1. Molecular Simulations
2.2. Geometrical Phase Analysis
2.3. The Bond Method
2.4. The Stress Method
3. Results
3.1. Uniform Strain and Uniform Strain Gradient
3.2. Strain Concentration at Holes
3.3. Strain Fields at the Crack Tip
3.4. Lattice Distortion by Dislocations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, A.W.; Montanari, B.; He, K.; Allen, C.S.; Wu, Y.A.; Harrison, N.M.; Kirkland, A.I.; Warner, J.H. Structural reconstruction of the graphene monovacancy. ACS Nano 2013, 7, 4495–4502. [Google Scholar] [CrossRef]
- Warner, J.H.; Margine, E.R.; Mukai, M.; Robertson, A.W.; Giustino, F.; Kirkland, A.I. Dislocation-driven deformations in graphene. Science 2012, 337, 209–212. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Xu, Z. Topological defects in two-dimensional crystals: The stress buildup and accumulation. J. Appl. Mech. 2014, 81, 091004. [Google Scholar] [CrossRef]
- Huang, L.; Zheng, F.; Deng, Q.; Thi, Q.H.; Wong, L.W.; Cai, Y.; Wang, N.; Lee, C.S.; Lau, S.P.; Ly, T.H.; et al. Anomalous fracture in two-dimensional rhenium disulfide. Sci. Adv. 2020, 6, eabc2282. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zheng, F.; Deng, Q.; Thi, Q.H.; Wong, L.W.; Cai, Y.; Wang, N.; Lee, C.S.; Lau, S.P.; Chhowalla, M.; et al. In situ scanning transmission electron microscopy observations of fracture at the atomic scale. Phys. Rev. Lett. 2020, 125, 246102. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Wang, Y.; Wang, A.; Lv, D.; Jin, C.; Xu, Z.; Probert, M.I.; Yuan, J.; Zhang, Z. Atomistic dynamics of sulfur-deficient high-symmetry grain boundaries in molybdenum disulfide. Nanoscale 2017, 9, 10312–10320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Zhou, J.; Wang, H.; Gao, L.; Feng, S.; Cao, K.; Xu, Z.; Lu, Y. Experimental nanomechanics of 2D materials for strain engineering. Appl. Nanosci. 2021, 11, 1075–1091. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, M.; Liu, J.; Xu, J.; Fu, L. Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater. 2019, 62, 759–775. [Google Scholar] [CrossRef] [Green Version]
- Levy, N.; Burke, S.; Meaker, K.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A.C.; Crommie, M.F. Strain-induced pseudo–magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 2010, 329, 544–547. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.C.; Teague, M.; Wang, J.Q.; Yeh, N.C. Nanoscale strain engineering of giant pseudo-magnetic fields, valley polarization, and topological channels in graphene. Sci. Adv. 2020, 6, eaat9488. [Google Scholar] [CrossRef]
- Ericksen, J.L. On the Cauchy-Born rule. Math. Mech. Solids 2008, 13, 199–220. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146. [Google Scholar] [CrossRef]
- Sarigiannidou, E.; Monroy, E.; Daudin, B.; Rouvière, J.; Andreev, A. Strain distribution GaN/AlN in quantum-dot superlattices. Appl. Phys. Lett. 2005, 87, 203112. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.Y.; Reuter, M.C.; Su, D.; Stach, E.A.; Ross, F.M. Strain and stability of ultrathin Ge layers in Si/Ge/Si axial heterojunction nanowires. Nano Lett. 2015, 15, 1654–1659. [Google Scholar] [CrossRef] [PubMed]
- Rösner, H.; Koch, C.T.; Wilde, G. Strain mapping along Al-Pb interfaces. Acta Mater. 2010, 58, 162–172. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, X.; Wen, H.; Liu, J.; Liu, Z.; Xie, H. Geometric phase analysis method using a subpixel displacement match algorithm. Appl. Opt. 2020, 59, 2393–2399. [Google Scholar] [CrossRef]
- Gu, Q.; Zhao, C.; Jing, H.; Xing, Y. Analysis of the Nano-Deformation Fields of Micro-Crack in Silicon by High-Resolution Transmission Electron Microscopy. In Proceedings of the ICEM 2008: International Conference on Experimental Mechanics 2008, Nanjing, China, 8–11 November 2008; International Society for Optics and Photonics: Bellingham, DC, USA, 2009; Volume 7375, p. 73750. [Google Scholar]
- Hÿtch, M.J.; Putaux, J.L.; Pénisson, J.M. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 2003, 423, 270–273. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Putaux, J.L.; Thibault, J. Stress and strain around grain-boundary dislocations measured by high-resolution electron microscopy. Philos. Mag. 2006, 86, 4641–4656. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Xing, Y.; Zhou, C.; Bai, P. Experimental examination of displacement and strain fields in an edge dislocation core. Acta Mater. 2008, 56, 2570–2575. [Google Scholar] [CrossRef]
- Chung, J.; Rabenberg, L. Measurement of incomplete strain relaxation in a silicon heteroepitaxial film by geometrical phase analysis in the transmission electron microscope. Appl. Phys. Lett. 2007, 91, 231902. [Google Scholar] [CrossRef]
- Rouviere, J.L.; Sarigiannidou, E. Theoretical discussions on the geometrical phase analysis. Ultramicroscopy 2005, 106, 1–17. [Google Scholar] [CrossRef]
- Peters, J.J.P.; Beanland, R.; Alexe, M.; Cockburn, J.W.; Revin, D.G.; Zhang, S.Y.; Sanchez, A.M. Artefacts in geometric phase analysis of compound materials. Ultramicroscopy 2015, 157, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.; Rabenberg, L. Effects of strain gradients on strain measurements using geometrical phase analysis in the transmission electron microscope. Ultramicroscopy 2008, 108, 1595–1602. [Google Scholar] [CrossRef]
- Zhu, Y.; Ophus, C.; Ciston, J.; Wang, H. Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images. Acta Mater. 2013, 61, 5646–5663. [Google Scholar] [CrossRef]
- Guerrero, E.; Galindo, P.; Yáñez, A.; Ben, T.; Molina, S.I. Error quantification in strain mapping methods. Microsc. Microanal. 2007, 13, 320–328. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, X.; Zhang, W. Effect of reference region size on strain measurements using geometrical phase analysis. J. Microsc. 2020, 278, 49–56. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Plamann, T. Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy. Ultramicroscopy 2001, 87, 199–212. [Google Scholar] [CrossRef]
- Zimmerman, J.A.; Webb, E.B.; Hoyt, J.J.; Jones, R.E.; Klein, P.A.; Bammann, D.J. Calculation of stress in atomistic simulation. Model. Simul. Mater. Sci. Eng. 2004, 12, S319–S332. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Ahmed, T.; Silverman, B.; Khawaja, M.S.; Calderon, J.; Rutten, A.; Tse, S. Anisotropic toughness and strength in graphene and its atomistic origin. J. Mech. Phys. Solids 2018, 110, 118–136. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Brenner, D.W.; Shenderova, O.A.; Harrison, J.A.; Stuart, S.J.; Ni, B.; Sinnott, S.B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 2002, 02, 783–802. [Google Scholar] [CrossRef]
- Eringen, A.C. Nonlinear Theory of Continuous Media; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Peters, J.J.P. Strain++ Version 1.7. 2021. Available online: https://jjppeters.github.io/Strainpp/ (accessed on 24 June 2021).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD–Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Hara, S.; Li, J. Adaptive strain-boost hyperdynamics simulations of stress-driven atomic processes. Phys. Rev. B 2010, 82, 184114. [Google Scholar] [CrossRef] [Green Version]
- Buehler, M.; Gao, H.; Huang, Y. Atomistic and continuum studies of stress and strain fields near a rapidly propagating crack in a harmonic lattice. Theor. Appl. Fract. Mech. 2004, 41, 21–42. [Google Scholar] [CrossRef]
- Cadelano, E.; Palla, P.L.; Giordano, S.; Colombo, L. Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 2009, 102, 235502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Fragneaud, B.; Marianetti, C.A.; Kysar, J.W. Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys. Rev. B 2009, 80, 205407. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.; Feng, S.; Han, Y.; Gao, L.; Ly, T.H.; Xu, Z.; Lu, Y. Elastic straining of free-standing monolayer graphene. Nat. Commun. 2020, 11, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilkey, W.D.; Pilkey, D.F.; Bi, Z. Holes. In Peterson’s Stress Concentration Factors; John Wiley & Sons: Hoboken, NJ, USA, 2007; Chapter 4; pp. 176–400. [Google Scholar]
- Lawn, B. Fracture of Brittle Solids; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Zhang, P.; Ma, L.; Fan, F.; Zeng, Z.; Peng, C.; Loya, P.E.; Liu, Z.; Gong, Y.; Zhang, J.; Zhang, X.; et al. Fracture toughness of graphene. Nat. Commun. 2014, 5, 3782. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Qi, H.J.; Fan, F.; Zhu, T.; Wang, B.; Wei, Y. Griffith criterion for brittle fracture in graphene. Nano Lett. 2015, 15, 1918–1924. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Wu, J.; Yin, H.; Shi, X.; Yang, R.; Dresselhaus, M. The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat. Mater. 2012, 11, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Foreman, A.J.; Jaswon, M.A.; Wood, J.K. Factors controlling dislocation widths. Proc. Phys. Soc. 1951, 64, 156–163. [Google Scholar] [CrossRef]
- Peierls, R. The size of a dislocation. Proc. Phys. Soc. 1940, 52, 34. [Google Scholar] [CrossRef]
- Pan, B.; Qian, K.; Xie, H.; Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009, 20, 062001. [Google Scholar] [CrossRef]
- Neumann, C.; Reichardt, S.; Venezuela, P.; Drögeler, M.; Banszerus, L.; Schmitz, M.; Watanabe, K.; Taniguchi, T.; Mauri, F.; Beschoten, B.; et al. Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat. Commun. 2015, 6, 8429. [Google Scholar] [CrossRef] [Green Version]
- Zubov, L.M. Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Cao, C.; Mukherjee, S.; Howe, J.Y.; Perovic, D.D.; Sun, Y.; Singh, C.V.; Filleter, T. Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers. Sci. Adv. 2018, 4, eaao7202. [Google Scholar] [CrossRef] [Green Version]
- Elder, R.M.; Mattson, W.D.; Sirk, T.W. Origins of error in the localized virial stress. Chem. Phys. Lett. 2019, 731, 136580. [Google Scholar] [CrossRef]
- Ziatdinov, M.; Dyck, O.; Maksov, A.; Li, X.; Sang, X.; Xiao, K.; Unocic, R.R.; Vasudevan, R.; Jesse, S.; Kalinin, S.V. Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations. ACS Nano 2017, 11, 12742–12752. [Google Scholar] [CrossRef] [Green Version]
- Madsen, J.; Liu, P.; Kling, J.; Wagner, J.B.; Hansen, T.W.; Winther, O.; Schiøtz, J. A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images. Adv. Theory Simul. 2018, 1, 1800037. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.H.; Fan, Y.; Robertson, A.W.; He, K.; Yoon, E.; Lee, G.D. Rippling graphene at the nanoscale through dislocation addition. Nano Lett. 2013, 13, 4937–4944. [Google Scholar] [CrossRef]
- Kazmierczak, N.P.; Van Winkle, M.; Ophus, C.; Bustillo, K.C.; Carr, S.; Brown, H.G.; Ciston, J.; Taniguchi, T.; Watanabe, K.; Bediako, D.K. Strain fields in twisted bilayer graphene. Nat. Mater. 2021, 20, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Xu, Z. Pattern development and control of strained solitons in graphene bilayers. Nano Lett. 2021, 21, 1772–1777. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Xu, Z. Strain Characterization in Two-Dimensional Crystals. Materials 2021, 14, 4460. https://doi.org/10.3390/ma14164460
Feng S, Xu Z. Strain Characterization in Two-Dimensional Crystals. Materials. 2021; 14(16):4460. https://doi.org/10.3390/ma14164460
Chicago/Turabian StyleFeng, Shizhe, and Zhiping Xu. 2021. "Strain Characterization in Two-Dimensional Crystals" Materials 14, no. 16: 4460. https://doi.org/10.3390/ma14164460
APA StyleFeng, S., & Xu, Z. (2021). Strain Characterization in Two-Dimensional Crystals. Materials, 14(16), 4460. https://doi.org/10.3390/ma14164460