High-Energy Mechanical Milling-Driven Reamorphization in Glassy Arsenic Monoselenide: On the Path of Tailoring Special Molecular-Network Glasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation Routines
2.2. Medium-Range Structure of Network Glass-Forming Substances by XRPD Analysis
2.3. Cluster Modeling of Molecular-Network Conformations in Covalent Substances
3. Results and Discussion
3.1. XRPD Parameterization in MQ-Derived g-AsSe
3.2. XRPD Parameterization in MM-Derived g-AsSe
3.3. Cluster Modeling of Molecular-Network Reamorphization Scenarios in MM-Derived g-AsSe
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roduner, E. Nanoscopic Materials. Size-Dependent Phenomena; Royal Society of Chemistry: Cambridge, UK, 2006; pp. 1–281. [Google Scholar]
- Vollath, D. Nanomaterials: An Introduction to Synthesis, Properties and Applications, 2nd ed.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2013; pp. 1–369. [Google Scholar]
- Gaffet, E.; Le Caër, G. Mechanical processing for nanomaterials. In Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2004; Volume X, pp. 1–39. [Google Scholar]
- Baláž, P.; Achimovicova, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Manuel Criado, J.; Delogu, F.; Dutkova, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, T.P.; Yadav, R.M.; Singh, D.P. Mechanical Milling: A Top down Approach for the Synthesis of Nanomaterials and Nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22–48. [Google Scholar] [CrossRef] [Green Version]
- Baláž, P.; Baláž, M.; Achimovičová, M.; Bujňáková, Z.; Dutková, E. Chalcogenide mechanochemistry in materials science: Insight into synthesis and applications (a review). J. Mater. Sci. 2017, 52, 11851–11890. [Google Scholar] [CrossRef]
- Cangialosi, D.; Alegria, A.; Colmenero, J. Effect of nanostructure on the thermal glass transition and physical aging in polymer materials. Progr. Polymer Sci. 2016, 54, 128–147. [Google Scholar] [CrossRef]
- Feltz, A. Amorphous Inorganic Materials and Glasses; VCH: Weinheim, Germany, 1993; pp. 1–446. [Google Scholar]
- Feltz, A.; Aust, H.; Blayer, A. Glass formation and properties of chalcogenide systems XXVI: Permittivity and the structure of glasses AsxSe1−x and GexSe1−x. J. Non-Cryst. Solids 1983, 55, 179–190. [Google Scholar] [CrossRef]
- Adam, J.-L.; Zhang, X. Chalcogenide Glasses: Preparation, Properties and Application; Woodhead Publishing: Cambridge, UK, 2013; pp. 1–717. [Google Scholar]
- Yang, G.; Bureau, B.; Rouxel, T.; Gueguen, Y.; Gulbiten, O.; Roiland, C.; Soignard, E.; Yarger, J.L.; Troles, J.; Sangleboeuf, J.-C.; et al. Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1−x system. Phys. Rev. B 2010, 82, 195206. [Google Scholar] [CrossRef]
- Kovanda, V.; Vlcek, M.; Jain, H. Structure of As-Se and As-P-Se glasses studied by Raman spectroscopy. J. Non-Cryst. Solids 2003, 327, 88–92. [Google Scholar] [CrossRef]
- Shpotyuk, Y.; Demchenko, P.; Bujňáková, Z.; Baláž, P.; Boussard-Pledel, C.; Bureau, B.; Shpotyuk, O. Effect of high-energy mechanical milling on the medium-range ordering in glassy As-Se. J. Am. Ceram. Soc. 2020, 103, 1631–1646. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Hyla, M.; Boyko, V. Structural-topological genesis of network-forming nanoclusters in chalcogenide semiconductor glasses. J. Optoelectron. Adv. Mater. 2013, 15, 1429–1437. Available online: https://joam.inoe.ro/articles/structural-topological-genesis-of-network-forming-nanoclusters-in-chalcogenide-semiconductor-glasses/ (accessed on 9 August 2021).
- Shpotyuk, O.; Hyla, M.; Boyko, V. Compositionally-dependent structural variations in glassy chalcogenides: The case of binary As-Se system. Comput. Mater. Sci. 2015, 110, 144–151. [Google Scholar] [CrossRef]
- Lucas, P.; Coleman, G.J.; Sen, S.; Gui, S.; Guimond, Y.; Calvez, L.; Boussard-Pledel, C.; Bureau, B.; Troles, J. Structural and chemical homogeneity of chalcogenide glass prepared by melt-rocking. J. Chem. Phys. 2019, 150, 014505. [Google Scholar] [CrossRef] [Green Version]
- Tkacova, K. Mechanical Activation of Minerals; Elsevier: New York, NY, USA, 1989; pp. 1–155. [Google Scholar]
- Burgio, N.; Iasonna, A.; Magini, M.; Padella, F. Mechanical alloying of the Fe-Zr system in different milling conditions. J. Phys. Colloques 1990, 51, C4-265–C4-271. [Google Scholar] [CrossRef] [Green Version]
- Heegn, H. Muhlen als Mechanoreaktoren. Chem. Ing. Tech. 2001, 73, 1529–1539. [Google Scholar] [CrossRef]
- Bujňáková, Z.; Baláž, P.; Makreski, P.; Jovanovski, G.; Caplovicova, M.; Caplovic, L.; Shpotyuk, O.; Ingram, A.; Lee, T.-C.; Cheng, J.-J.; et al. Arsenic sulfide nanoparticles prepared by milling: Properties, free-volume characterization, and anti-cancer effects. J. Mater. Sci. 2015, 50, 1973–1985. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Kozdras, A.; Demchenko, P.; Shpotyuk, Y.; Bujňáková, Z.; Baláž, P. Solid-state amorphization of As45S55 alloy induced by high-energy mechanical milling. Thermochim. Acta 2016, 642, 59–66. [Google Scholar] [CrossRef]
- Baláž, P.; Baláž, M.; Shpotyuk, O.; Demchenko, P.; Vlcek, M.; Shopska, M.; Briancin, J.; Bujňáková, Z.; Shpotyuk, Y.; Selepova, L.; et al. Properties of arsenic sulphide (β-As4S4) modified by mechanical activation. J. Mater. Sci. 2017, 52, 1747–1758. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Bujňáková, Z.; Sayagués, M.J.; Baláž, P.; Ingram, A.; Shpotyuk, Y.; Demchenko, P. Microstructure characterization of multifunctional As4S4/Fe3O4 nanocomposites by complementary atomic-specific and atomic-deficient probes. Mater. Charact. 2017, 132, 303–311. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Baláž, P.; Bujňáková, Z.; Ingram, A.; Demchenko, P.; Shpotyuk, Y. Mechanochemically-driven amorphization of nanostructurized arsenicals, the case of β-As4S4. J. Mater. Sci. 2018, 53, 13464–13476. [Google Scholar] [CrossRef] [Green Version]
- Shpotyuk, Y.; Boussard-Pledel, C.; Bureau, B.; Demchenko, P.; Szlęzak, J.; Cebulski, J.; Bujňáková, Z.; Baláž, P.; Shpotyuk, O. Effect of high-energy mechanical milling on the FSDP-related XRPD correlations in Se-rich glassy arsenic selenides. J. Phys. Chem. Sol. 2019, 124, 318–326. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Demchenko, P.; Shpotyuk, Y.; Bujňáková, Z.; Baláž, P.; Hyla, M.; Boyko, V. Amorphization diversity driven by high-energy mechanical milling in β-As4S4 polymorph. Mater. Today Commun. 2019, 21, 100679. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Kozdras, A.; Balaz, P.; Bujnakova, Z.; Shpotyuk, Y. DSC TOPEM® study of high-energy mechanical milling-driven amorphization in β-As4S4-based arsenicals. J. Therm. Anal. Calorim. 2019, 135, 2935–2941. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Demchenko, P.; Shpotyuk, Y.; Kozyukhin, S.; Kovalskiy, A.; Kozdras, A.; Lukáčová Bujňáková, Z.; Baláž, P. Milling-driven nanonization of AsxS100−x alloys from second glass-forming region: The case of higher-crystalline arsenicals (51 < x < 56). J. Non-Cryst. Solids 2020, 539, 120086. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Kozyukhin, S.; Demchenko, P.; Shpotyuk, Y.; Kozdras, A.; Vlcek, M.; Kovalskiy, A.; Lukáčová Bujňáková, Z.; Baláž, P.; Mitsa, V.; et al. Milling-driven nanonization of AsxS100-x alloys from second glass-forming region: The case of lower-crystalline arsenicals (56 < x < 66). J. Non-Cryst. Solids 2020, 549, 120339. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Lukáčová Bujňáková, Z.; Baláž, P.; Shpotyuk, Y.; Demchenko, P.; Balitska, V. Impact of grinding media on high-energy ball milling-driven amorphization in multiparticulate As4S4/ZnS/Fe3O4 nanocomposites. Adv. Powder Technol. 2020, 31, 3610–3617. [Google Scholar] [CrossRef]
- Stoe WinXPOW, version 3.03; Stoe & Cie GmbH: Darmstadt, Germany, 2010.
- Elliott, S.R. Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses. J. Non-Cryst. Solids 1995, 182, 40–48. [Google Scholar] [CrossRef]
- Elliott, S.R. Second sharp diffraction peak in the structure factor of binary covalent network glasses. Phys. Rev. B 1995, 51, 8599–8601. [Google Scholar] [CrossRef] [PubMed]
- Zeidler, A.; Salmon, P.S. Pressure-driven transformation of the ordering in amorphous network-forming materials. Phys. Rev. B 2016, 93, 214204. [Google Scholar] [CrossRef] [Green Version]
- Salmon, P.S. Real space manifestation of the first sharp diffraction peak in the structure factor of liquid and glassy materials. Proc. R. Soc. Lond. A 1994, 445, 351–365. [Google Scholar] [CrossRef]
- Bychkov, E.; Benmore, C.J.; Price, D.L. Compositional changes in the first sharp diffraction peak in binary selenide glasses. Phys. Rev. B 2005, 72, 172107. [Google Scholar] [CrossRef]
- Golovchak, R.; Lucas, P.; Oelgoetz, J.; Kovalskiy, A.; York-Winegar, J.; Saiyasombat, C.; Shpotyuk, O.; Feygenson, M.; Neuefeind, J.; Jain, H. Medium range order and structural relaxation in As–Se network glasses through FSDP analysis. Mater. Chem. Phys. 2015, 153, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Downs, R.T.; Hall-Wallace, M. The American mineralogist crystal structure database. Am. Mineral. 2003, 88, 247–250. [Google Scholar]
- Villars, P.; Cenzual, K. (Eds.) Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; Release 2014/15; ASM International: Materials Park, OH, USA, 2014. [Google Scholar]
- Brandenburg, K. DIAMOND 3.2g, Crystal and Molecular Structure Visualization; Crystal Impact GbR: Bonn, Germany, 2011. [Google Scholar]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodriguez-Carvajal, J. WinPLOTR: A Windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 118, 378–381. [Google Scholar] [CrossRef] [Green Version]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Bletry, J. Sphere and distance models for binary disordered systems. Philos. Mag. B 1990, 62, 469–508. [Google Scholar] [CrossRef]
- Sozin, Y.I. Diffractometry of coordination spheres. Crystallogr. Rep. 1994, 39, 6–13. [Google Scholar]
- Rachek, O.P. X-ray diffraction study of amorphous alloys Al-Ni-Ce-Sc with using Ehrenfest’s formula. J. Non-Cryst. Solids 2006, 352, 3781–3786. [Google Scholar] [CrossRef]
- Feng, R.; Stachurski, Z.H.; Rodrigues, M.D.; Kluth, P.; Araujo, L.L.; Bulla, D.; Ridway, M.C. X-ray scattering from amorphous solids. J. Non-Cryst. Solids 2013, 383, 21–27. [Google Scholar] [CrossRef]
- Ehrenfest, P. On interference phenomena to be expected when Roentgen rays pass through a diatomic gas. Proc. KNAW 1915, 17, 1914–1915. [Google Scholar]
- Hehre, W.J.; Stewart, R.F.; Pople, J.A. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of slater-type atomic orbitals. J. Chem. Phys. 1969, 51, 2657–2665. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Jackson, K. Electric fields in electronic structure calculations: Electric polarizabilities and IR and Raman spectra from first principles. Phys. Status Solidi 2000, 217, 293–310. [Google Scholar] [CrossRef]
- Holomb, R.; Veres, M.; Mitsa, V. Ring-, branchy-, and cage-like AsnSm nanoclusters in the structure of amorphous semiconductors: Ab initio and Raman study. J. Optoelectron. Adv. Mater. 2009, 11, 917–923. [Google Scholar]
- Phillips, J.C. Topology of covalent non-crystalline solids. I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 1979, 34, 153–181. [Google Scholar] [CrossRef]
- Thorpe, M.F. Continuous deformations in random networks. J. Non-Cryst. Solids 1983, 57, 355–370. [Google Scholar] [CrossRef]
- Thorpe, M.F. Bulk and surface floppy modes. J. Non-Cryst. Solids 1995, 182, 135–142. [Google Scholar] [CrossRef]
- Vaipolin, A.A.; Porai-Koshits, E.A. Structural models of glasses and the structures of crystalline chalcogenides. Sov. Phys. Solid State 1963, 5, 497–500. [Google Scholar]
- Gaskell, P.H. The structure of simple glasses: Randomness or pattern the debate goes on. Glass Phys. Chem. 1998, 24, 180–187. [Google Scholar]
- Wright, A.C. Crystalline-like ordering in melt-quenched network glasses? J. Non-Cryst. Solids 2014, 401, 4–26. [Google Scholar] [CrossRef]
- Renninger, A.L.; Averbach, B.L. Crystalline structures of As2Se3 and As4Se4. Acta Cryst. B 1973, 29, 1583–1589. [Google Scholar] [CrossRef]
- Bastow, T.J.; Whitfied, H.J. Crystal data and nuclear quadrupole resonance spectra of tetra-arsenic triselenide. J. Chem. Soc. Dalton Trans. 1977, 959–961. [Google Scholar] [CrossRef]
- Stergiou, A.C.; Rentzeperis, P.J. The crystal structure of arsenic selenide, As2Se3. Zeitsch. Krist. 1985, 173, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Bonazzi, P.; Bindi, L. A crystallographic review of arsenic sulfides: Effects of chemical variations and changes induced by exposure to light. Z. Für Krist. Cryst. Mater. 2008, 223, 132–147. [Google Scholar] [CrossRef]
- Kyono, A. Molecular conformation and anion configuration variations for As4S4 and As4Se4 in an anion-substituted solid solution. Am. Mineral. 2009, 94, 451–460. [Google Scholar] [CrossRef]
- Popescu, M. Medium range order in chalcogenide glasses. In Physics and Applications of Non-Crystalline Semiconductors in Optoelectronics; Andriesh, A., Bertolotti, M., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 215–232. [Google Scholar]
- De Neufville, J.P.; Moss, S.C.; Ovshinsky, S.R. Photostructural transformations in amorphous As2Se3 and As2S3 films. J. Non-Cryst. Solids 1974, 13, 191–223. [Google Scholar] [CrossRef]
- Sarsembinov, S.S.; Prikhodko, O.Y.; Ryaguzov, A.P.; Maksimova, S.Y.; Ushanov, V.Z. Atomic structure and short- and medium-range order parameters in amorphous chalcogenide films prepared by different methods. J. Non-Cryst. Solids 2007, 353, 2057–2061. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Glazyrin, K.; Liermann, H.P.; Franz, H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Jiang, J.Z. Breakdown of intermediate range order in AsSe chalcogenide glass. J. Appl. Phys. 2016, 120, 145901. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.S.; Hong-Bo, L.; Chuan-Long, L.; Ai-Guo, L.; Ke, Y.; Glazyrin, K.; Liermann, H.P.; Franz, H.; Stahl, K.; Cui, S.; et al. Reversible devitrification in amorphous As2Se3 under pressure. Phys. Rev. B 2016, 94, 195211. [Google Scholar] [CrossRef] [Green Version]
- Properzi, L.; Santoro, M.; Minicucci, M.; Iesari, F.; Ciambezi, M.; Nataf, L.; Le Godec, Y.; Irifune, T.; Baudelet, F.; Di Cicco, A. Structural evolution mechanisms of amorphous and liquid As2Se3 at high pressures. Phys. Rev. B 2016, 93, 214205. [Google Scholar] [CrossRef]
- Bastow, T.J.; Whitfield, H.J. Crystal structure of tetra-arsenic tetraselenide. Chem. Soc. Dalton Trans. 1973, 17, 1739–1740. [Google Scholar] [CrossRef]
- Smail, E.J.; Sheldrick, G.M. Tetra-arsenic tetraselenide. Acta Cryst. B 1973, 29, 2014–2016. [Google Scholar] [CrossRef]
- Goldstein, P.; Paton, A. The crystal and molecular structure of tetrameric arsenic selenide, As4Se4. Acta Cryst. B 1974, 30, 915–920. [Google Scholar] [CrossRef]
Sample | Peak-Halo | Peak Position, θ | Peak Width, FWHM | Characteristic Distance, R | Correlation Length, L | Interatomic Distance, ds |
---|---|---|---|---|---|---|
°2θ | °2θ | Å | Å | Å | ||
As50Se50, unmilled | Pre-FSDP | 6.22 | 4.01 | 14.2 | 22.0 | 17.44 |
FSDP | 16.03 | 3.21 | 5.5 | 27.5 | 6.79 | |
Post-FSDP | 19.96 | 4.24 | 4.4 | 20.8 | 5.46 | |
SSDP | 29.77 | 5.88 | 3.0 | 15.0 | 3.68 | |
Post-SSDP | 33.91 | 7.07 | 2.6 | 12.5 | 3.24 | |
TDP | 52.64 | 8.77 | 1.7 | 10.1 | 2.14 | |
As50Se50, nano-milled | Pre-FSDP | 6.21 | 4.69 | 14.2 | 18.8 | 17.49 |
FSDP | 16.42 | 4.27 | 5.4 | 20.7 | 6.63 | |
Post-FSDP | 20.81 | 3.63 | 4.3 | 24.3 | 5.25 | |
SSDP | 30.88 | 7.02 | 2.9 | 12.6 | 3.56 | |
Post-SSDP | 35.88 | 6.41 | 2.5 | 13.8 | 3.08 | |
TDP | 52.89 | 8.87 | 1.7 | 10.0 | 2.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shpotyuk, Y.; Demchenko, P.; Shpotyuk, O.; Balitska, V.; Boussard-Pledel, C.; Bureau, B.; Lukáčová Bujňáková, Z.; Baláž, P. High-Energy Mechanical Milling-Driven Reamorphization in Glassy Arsenic Monoselenide: On the Path of Tailoring Special Molecular-Network Glasses. Materials 2021, 14, 4478. https://doi.org/10.3390/ma14164478
Shpotyuk Y, Demchenko P, Shpotyuk O, Balitska V, Boussard-Pledel C, Bureau B, Lukáčová Bujňáková Z, Baláž P. High-Energy Mechanical Milling-Driven Reamorphization in Glassy Arsenic Monoselenide: On the Path of Tailoring Special Molecular-Network Glasses. Materials. 2021; 14(16):4478. https://doi.org/10.3390/ma14164478
Chicago/Turabian StyleShpotyuk, Yaroslav, Pavlo Demchenko, Oleh Shpotyuk, Valentina Balitska, Catherine Boussard-Pledel, Bruno Bureau, Zdenka Lukáčová Bujňáková, and Peter Baláž. 2021. "High-Energy Mechanical Milling-Driven Reamorphization in Glassy Arsenic Monoselenide: On the Path of Tailoring Special Molecular-Network Glasses" Materials 14, no. 16: 4478. https://doi.org/10.3390/ma14164478
APA StyleShpotyuk, Y., Demchenko, P., Shpotyuk, O., Balitska, V., Boussard-Pledel, C., Bureau, B., Lukáčová Bujňáková, Z., & Baláž, P. (2021). High-Energy Mechanical Milling-Driven Reamorphization in Glassy Arsenic Monoselenide: On the Path of Tailoring Special Molecular-Network Glasses. Materials, 14(16), 4478. https://doi.org/10.3390/ma14164478