On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements
Abstract
:1. Introduction
2. Numerical Procedure
3. Experiment
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bryzek, J. Proceedings of the TSensors Summit, Stanford University, Stanford, CA, USA, 23–25 October 2013.
- Narita, F.; Fox, M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater. 2018, 20, 1700743. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Narita, F. Fabrication of potassium sodium niobate nano-particle/polymer composites with piezoelectric stability and their application to unsteady wind energy harvesters. J. Appl. Phys. 2019, 126, 224501. [Google Scholar] [CrossRef]
- Hara, Y.; Yamamoto, Y.; Makihara, K. Self-sensing state estimation of switch-controlled energy harvesters. J. Intell. Mater. Syst. Struct. 2020, 31, 2326–2341. [Google Scholar] [CrossRef]
- Khazaee, M.; Rezaniakolaie, A.; Rosendahl, L. A broadband macro-fiber-composite piezoelectric energy harvester for higher energy conversion from practical wideband vibrations. Nano Energy 2020, 76, 104978. [Google Scholar] [CrossRef]
- Wang, Z.; Kurita, H.; Nagaoka, H.; Narita, F. Potassium sodium niobate lead-free piezoelectric nanocomposite generators based on carbon-fiber-reinforced polymer electrodes for energy-harvesting structures. Compos. Sci. Technol. 2020, 199, 108331. [Google Scholar] [CrossRef]
- Wang, Y.; Yanaseko, T.; Kurita, H.; Sato, H.; Asanuma, H.; Narita, F. Electromechanical response and residual thermal stress of metal-core piezoelectric fiber/Al matrix composites. Sensors 2020, 20, 5799. [Google Scholar] [CrossRef]
- Hara, Y.; Zhou, M.; Li, A.; Otsuka, K.; Makihara, K. Piezoelectric energy enhancement strategy for active fuzzy harvester with time-varying and intermittent switching. Smart Mater. Struct. 2021, 30, 015038. [Google Scholar] [CrossRef]
- Atulasimha, J.; Flatau, A.B. A review of magnetostrictive iron–gallium alloys. Smart Mater. Struct. 2011, 20, 043001. [Google Scholar] [CrossRef]
- Deng, Z.; Dapino, M.J. Review of magnetostrictive vibration energy harvesters. Smart Mater. Struct. 2017, 26, 103001. [Google Scholar] [CrossRef]
- Nakajima, T.; Takeuchi, T.; Yuito, I.; Kato, K.; Saito, M.; Abe, K.; Sasaki, T.; Sekiguchi, T.; Yamaura, S. Effect of annealing on magnetostrictive properties of Fe–Co alloy thin films. Mater. Trans. 2014, 55, 556–560. [Google Scholar] [CrossRef] [Green Version]
- Yamaura, S.; Nakajima, T.; Satoh, T.; Ebata, T.; Furuya, Y. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling. Mater. Sci. Eng. B 2015, 193, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhan, Q.; Yang, H.; Li, H.; Zhang, S.; Liu, Y.; Wang, B.; Tan, X.; Li, R.-W. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers. AIP Adv. 2016, 6, 035206. [Google Scholar] [CrossRef]
- Bennett, S.P.; Baldwin, J.W.; Staruch, M.; Matis, B.R.; LaComb, J.; Jvan’tErve, O.M.; Bussmann, K.; Metzler, M.; Gottron, N.; Zappone, W.; et al. Magnetic field response of doubly clamped magnetoelectric microelectromechanical AlN-FeCo resonators. Appl. Phys. Lett. 2017, 111, 252903. [Google Scholar] [CrossRef]
- Zhu, L.; Li, K.; Luo, Y.; Yu, D.; Wang, Z.; Wu, G.; Xie, J.; Tang, Z. Magnetostrictive properties and detection efficiency of TbDyFe/FeCo composite materials for nondestructive testing. J. Rare Earths 2019, 37, 166–170. [Google Scholar] [CrossRef]
- Wang, W.; Jia, Y.; Xue, X.; Liang, Y.; Du, Z. Magnetostrictive effect in micro-dotted FeCo film coated surface acoustic wave devices. Smart Mater. Struct. 2018, 27, 105040. [Google Scholar]
- Wang, Z.; Mori, K.; Nakajima, K.; Narita, F. Fabrication, modeling and characterization of magnetostrictive short fiber composites. Materials 2020, 13, 1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatti, S.; Ma, C.; Liu, X.; Piramanayagam, S.N. Stress-induced domain wall motion in FeCo-based magnetic microwires for realization of energy harvesting. Adv. Electron. Mater. 2019, 5, 1800467. [Google Scholar] [CrossRef] [Green Version]
- Seino, M.; Jiang, L.; Yang, Z.; Katabira, K.; Satake, T.; Narita, F.; Murasawa, G. Impact energy harvesting by Fe-Co fiber reinforced Al-Si matrix composite. Materialia 2020, 10, 100644. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Seino, M.; Kumaoka, D.; Murasawa, G.; Narita, F. Twisting and reverse magnetic field effects on energy conversion of magnetostrictive wire metal matrix composites. Phys. Status Solidi RRL 2020, 14, 2000281. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Z.; Nakajima, K.; Neyama, D.; Narita, F. Structural design and performance evaluation of FeCo/epoxy magnetostrictive composites. Compos. Sci. Technol. 2021, 210, 108840. [Google Scholar] [CrossRef]
- Mori, K.; Horibe, T.; Maejima, K. Evaluation of the axial force in an FeCo bolt using the inverse magnetostrictive effect. Measurement 2020, 165, 108131. [Google Scholar] [CrossRef]
- Ueno, T.; Yamada, S. Performance of energy harvester using iron–gallium alloy in free vibration. IEEE Trans. Magn. 2011, 47, 2407–2409. [Google Scholar] [CrossRef]
- Mori, K.; Horibe, T.; Ishikawa, S.; Shindo, Y.; Narita, F. Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning. Smart Mater. Struct. 2015, 24, 125032. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, C.; Han, Q.; Chu, F. Hybrid energy harvesting from mechanical vibrations and magnetic field. Appl. Phys. Lett. 2018, 113, 013901. [Google Scholar] [CrossRef]
- Yang, Z.; Nakajima, K.; Onodera, R.; Tayama, T.; Chiba, D.; Narita, F. Magnetostrictive clad steel plates for high-performance vibration energy harvesting. Appl. Phys. Lett. 2018, 112, 073902. [Google Scholar] [CrossRef]
- Ghodsi, M.; Ziaiefar, H.; Mohammadzaheri, M.; Al-Yahmedi, A. Modeling and characterization of permendur cantilever beam for energy harvesting. Energy 2019, 176, 561–569. [Google Scholar] [CrossRef]
- Patra, S. Design and development of magnetostrictive low power DC generator and vibration sensor. IEEE Sens. J. 2020, 20, 6324–6330. [Google Scholar] [CrossRef]
- Liu, H.; Cong, C.; Cao, C.; Zhao, Q. Analysis of the key factors affecting the capability and optimization for magnetostrictive iron-gallium alloy ambient vibration harvesters. Sensors 2020, 20, 401. [Google Scholar] [CrossRef] [Green Version]
- Saberkari, H.; Ghavifekr, H.B.; Shamsi, M. Comprehensive performance study of magneto cantilevers as a candidate model for biological sensors used in lab-on-a-chip applications. J. Med. Signals Sens. 2015, 5, 77–87. [Google Scholar] [CrossRef]
- Guo, X.; Sang, S.; Guo, J.; Jian, A.; Duan, Q.; Ji, J.; Zhang, Q.; Zhang, W. A magnetoelastic biosensor based on E2 glycoprotein for wireless detection of classical swine fever virus E2 antibody. Sci. Rep. 2017, 7, 15626. [Google Scholar] [CrossRef] [Green Version]
- Narita, F.; Wang, Z.; Kurita, H.; Li, Z.; Shi, Y.; Jia, Y.; Soutis, C. A review of piezoelectric and magnetostrictive biosensor materials for detection of COVID-19 and other viruses. Adv. Mater. 2021, 33, 2005448. [Google Scholar] [CrossRef] [PubMed]
- Alshits, V.I.; Darinskii, A.N.; Lothe, J. On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties. Wave Motion 1992, 16, 265–283. [Google Scholar] [CrossRef]
- Engdahl, G. Handbook of Giant Magnetostrictive Materia1-9ls; Academic: San Diego, CA, USA, 2000. [Google Scholar]
- Lee, J.; Boyd, J.G., IV; Lagoudas, D.C. Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 2005, 43, 790–825. [Google Scholar] [CrossRef]
- Liang, C.; Morshed, S.; Prorok, B.C. Correction for longitudinal mode vibration in thin slender beams. Appl. Phys. Lett. 2007, 90, 221912. [Google Scholar] [CrossRef]
- Grimes, C.A.; Ong, K.G.; Loiselle, K.; Stoyanov, P.G.; Kouzoudis, D.; Liu, Y.; Tong, C.; Tefiku, F. Magnetoelastic sensors for remote query environmental monitoring. Smart Mater. Struct. 1999, 8, 639–646. [Google Scholar] [CrossRef]
- Yang, Z.; Onodera, R.; Tayama, T.; Watanabe, M.; Narita, F. Magnetomechanical design and power generation of magnetostrictive clad plate cantilever. Appl. Phys. Lett. 2019, 115, 243504. [Google Scholar] [CrossRef]
- Liu, H.; Lim, C.W.; Gao, S.; Zhao, J. Effects analysis of bias and excitation conditions on power output of an environmental vibration energy harvesting device using Fe-Ga slice. Mechatronics 2019, 57, 20–28. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Sun, X.; Cong, C.; Cao, C.; Zhao, Q. Enhanced the capability of magnetostrictive ambient vibration harvester through structural configuration, pre-magnetization condition and elastic magnifier. J. Sound Vib. 2021, 492, 115805. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Narita, F. Design and finite element simulation of metal-core piezoelectric fiber/epoxy matrix composites for virus detection. Sens. Actuators A Phys. 2021, 327, 112742. [Google Scholar] [CrossRef]
- Narita, F.; Katabira, K. Stress-rate dependent output voltage for Fe29Co71 magnetostrictive fiber/polymer composites: Fabrication, experimental observation and theoretical prediction. Mater. Trans. 2017, 58, 302–304. [Google Scholar] [CrossRef] [Green Version]
- Guntupalli, R.; Hu, J.; Lakshmanan, R.S.; Huang, T.S.; Barbaree, J.M.; Chin, B.A. A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium. Biosens. Bioelectron. 2007, 22, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, L.; Fu, L.; Li, S.; Chen, H.; Cheng, Z.-Y. Magnetostrictive resonators as sensors and actuators. Sens. Actuators A 2013, 200, 2–10. [Google Scholar] [CrossRef]
- Pandey, L.M. Design of engineered surfaces for prospective detection of SARS-CoV-2 using quartz crystal microbalance-based techniques. Expert Rev. Proteom. 2020, 17, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Pandey, L.M. Surface engineering of personal protective equipments (PPEs) to prevent the contagious infections of SARS-CoV-2. Surf. Eng. 2020, 36, 901–907. [Google Scholar] [CrossRef]
ij or kl | p or q |
---|---|
11 | 1 |
22 | 2 |
33 | 3 |
23 or 32 | 4 |
31 or 13 | 5 |
12 or 21 | 6 |
Material | Elastic Compliance * (×10−12 m2/N) | Mass Density (kg/m3) | |||||
---|---|---|---|---|---|---|---|
Fe-Co | 5.5 | 5.5 | 14.3 | 14.3 | −1.65 | −1.65 | 8400 |
Ni | 5.0 | 5.0 | 13.1 | 13.1 | −1.55 | −1.55 | 8900 |
Material | Piezomagnetic Constant * (×10−12 m2/A) | Magnetic Permittivity (×10−6 H/m) | |||
---|---|---|---|---|---|
μ11 | μ33 | ||||
Fe-Co | −60.3 | 125 | 318 | 1.26 | 1.26 |
Ni | 35.5 | −73.6 | −187.2 | 2.51 | 2.51 |
Material | Output Voltage Density (V/cm3) | Bias Magnetic Field | Condition | Reference |
---|---|---|---|---|
Fe-Co/Ni clad plate | 2.1 | 0 mT | Frequency of 107 Hz | This work |
Fe-Co wire/epoxy Permendur plate | 15 0.0044 | 0 mT A permanent magnet | Frequency of 158 Hz Frequency of 64 Hz | [21] [27] |
Fe-Ga plate | 0.25 | 0 mT | Frequency of 75 Hz 5 g acceleration | [29] |
2.3 | 8 permanent magnets | Frequency of 75 Hz | [29] | |
Fe-Ga plate Fe-Ga/Cu laminate | 0.34 4.0 | 6.25 mT 8 permanent magnets | 2 g acceleration Frequency of 180 Hz Frequency of 25 Hz 1 g acceleration | [39] [40] |
Fe-Ga/piezoelectric laminate | 0.6 | 0.35 mT | Frequency of 105 Hz 0.1 g acceleration | [25] |
Traditional Piezoelectric | Traditional Magnetostrictive | Present Magnetostrictive | |
---|---|---|---|
Structure | Complicated | Simpler | Simpler |
Fabrication | Difficult | Easy | Easy |
Actuating | Electrical | Magnetic | Ambient vibration |
Sensing | Electrical | Magnetic | Magnetic |
Measured value | Frequency shift | Frequency shift | Output voltage |
Advantage | Compact configuration | Simple configuration | Simple configuration |
- | High flexibility | High flexibility | |
- | Wireless | Wireless | |
- | - | Rapid | |
Disadvantage/future work | Brittleness | Pick-up coil | Pick-up coil |
Charge leakage | Nonlinear effect | Need to improve sensitivity | |
Eddy current |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, K.; Wang, Y.; Katabira, K.; Neyama, D.; Onodera, R.; Chiba, D.; Watanabe, M.; Narita, F. On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements. Materials 2021, 14, 4486. https://doi.org/10.3390/ma14164486
Mori K, Wang Y, Katabira K, Neyama D, Onodera R, Chiba D, Watanabe M, Narita F. On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements. Materials. 2021; 14(16):4486. https://doi.org/10.3390/ma14164486
Chicago/Turabian StyleMori, Kotaro, Yinli Wang, Kenichi Katabira, Daiki Neyama, Ryuichi Onodera, Daiki Chiba, Masahito Watanabe, and Fumio Narita. 2021. "On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements" Materials 14, no. 16: 4486. https://doi.org/10.3390/ma14164486
APA StyleMori, K., Wang, Y., Katabira, K., Neyama, D., Onodera, R., Chiba, D., Watanabe, M., & Narita, F. (2021). On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements. Materials, 14(16), 4486. https://doi.org/10.3390/ma14164486