Preparation of Cellulose Nanoparticles from Foliage by Bio-Enzyme Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Moisture Content Measururements
2.2. Lignin Content
2.3. Holocellulose Content
2.4. Cellulose and Hemicellulose Content
2.5. Cellulose Nano-Particle (CNP) Preparation
2.6. Characterization of the CNPs
3. Results and Discussion
3.1. The Main Components of Foliage
3.2. CNPs Properties
3.2.1. TEM Analysis
3.2.2. FTIR Analysis
3.2.3. FESEM Analysis
3.2.4. XRD Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Bruins, M.E.; de Bruijn, W.J.; Vincken, J.-P. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. J. Food Compos. Anal. 2020, 86, 103385. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Tang, J.; Xu, T.; Gu, L.; Zhou, H. Effects of cassava foliage on feed digestion, meat quality, and antioxidative status of geese. Poult. Sci. 2020, 99, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Yu, W.; Wang, C.; Liu, L.; Li, F.; Tan, Z. Green extraction of cannabidiol from industrial hemp (Cannabis sativa L.) using deep eutectic solvents coupled with further enrichment and recovery by macroporous resin. J. Mol. Liq. 2019, 287, 110957. [Google Scholar] [CrossRef]
- Miazek, K.; Ledakowicz, S. Chlorophyll extraction from leaves, needles and microalgae: A kinetic approach. Int. J. Agric. Biol. Eng. 2013, 6, 107. [Google Scholar]
- Rodrigues, V.H.; de Melo, M.M.; Tenberg, V.; Carreira, R.; Portugal, I.; Silva, C.M. Similarity analysis of essential oils and oleoresins of Eucalyptus globulus leaves produced by distinct methods, solvents and operating conditions. Ind. Crop. Prod. 2021, 164, 113339. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, T.; Belete, A.; Syrowatka, F.; Neubert, R.H.; Gebre-Mariam, T. Extraction and characterization of celluloses from various plant byproducts. Int. J. Biol. Macromol. 2020, 158, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Alemdar, A.; Sain, M. Isolation and characterization of nanofibers from agricultural residues: Wheat straw and soy hulls. Bioresour. Technol. 2008, 99, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; De Hoop, C.F.; Li, F.; Xie, J.; Hse, C.Y.; Qi, J.; Jiang, Y.; Chen, Y. Dilute Alkali and Hydrogen Peroxide Treatment of Microwave Liquefied Rape Straw Residue for the Extraction of Cellulose Nanocrystals. J. Nanomater. 2017, 2017, 4049061. [Google Scholar] [CrossRef] [Green Version]
- Janardhnan, S.; Sain, M.M. Isolation of cellulose microfibrils—An enzymatic approach. Bioresources 2006, 1, 176–188. [Google Scholar] [CrossRef]
- Henriksson, M.; Berglund, L.; Lindström, T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 2007, 43, 3434–3441. [Google Scholar] [CrossRef]
- Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P.T.; Ikkala, O.; et al. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 2007, 8, 1934–1941. [Google Scholar] [CrossRef] [PubMed]
- Turon, X.; Rojas, O.J.; Deinhammer, R.S. Enzymatic Kinetics of Cellulose Hydrolysis: A QCM-D Study. Langmuir 2008, 24, 3880–3887. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wu, Q.; Moon, R.J.; Hubbe, M.A.; Bortner, M.J. Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. Adv. Mater. 2021, 33, 2006052. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, M.I.; Makarov, I.S.; Golova, L.K.; Gromovykh, P.S.; Kulichikhin, V.G. Rheological Properties of Aqueous Dispersions of Bacterial Cellulose. Processes 2020, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Lin, W.; Tang, L.; Wang, S.; Chen, X.; Huang, B. A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J. Mater. Sci. 2014, 50, 611–619. [Google Scholar] [CrossRef]
- Lu, Q.-L.; Tang, L.-R.; Wang, S.; Huang, B.; Chen, Y.-D.; Chen, X.-R. An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese. Biomass Bioenergy 2014, 70, 267–272. [Google Scholar] [CrossRef]
- Peter, Z. Order in cellulosics: Historical review of crystal structure research on cellulose. Carbohydr. Polym. 2021, 254, 117417. [Google Scholar] [CrossRef] [PubMed]
Chemical Compounds | Pine Needles | Black Locust Leaves | Bamboo Leaves | Elm Leaves | Poplar Leaves |
---|---|---|---|---|---|
MC (%) | 9.01 (0.12) | 9.43 (0.09) | 7.82 (0.10) | 10.14 (0.11) | 9.14 (0.05) |
Lignin (%) | 29.3 (0.3) | 37.9 (0.20) | 25.2 (0.8) | 24.1 (0.5) | 25.9 (0.6) |
Holocellulose (%) | 40.8 (0.3) | 39.0 (0.1) | 57.3 (0.5) | 37.1 (0.9) | 38.3 (0.2) |
Celluloses (%) | 20.5 (0.1) | 18.0 (0.6) | 19.5 (0.4) | 17.6 (0.2) | 15.5 (0.3) |
Hemicellulose (%) | 20.3 (0.4) | 21.0 (0.1) | 37.7 (0.5) | 19.6 (0.1) | 22.8 (0.3) |
Sample | Fiber Width/nm | ||
---|---|---|---|
Minimum Value | Maximum Value | Average Value | |
Pine needles | 18 | 39 | 31 |
Poplar leaves | 23 | 50 | 36 |
Bamboo leaves | 24 | 53 | 37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Yang, M.; Qiang, M.; Li, X.; Morrell, J.J.; Yao, Y.; Su, Y. Preparation of Cellulose Nanoparticles from Foliage by Bio-Enzyme Methods. Materials 2021, 14, 4557. https://doi.org/10.3390/ma14164557
Tang Z, Yang M, Qiang M, Li X, Morrell JJ, Yao Y, Su Y. Preparation of Cellulose Nanoparticles from Foliage by Bio-Enzyme Methods. Materials. 2021; 14(16):4557. https://doi.org/10.3390/ma14164557
Chicago/Turabian StyleTang, Zhengjie, Mingwei Yang, Mingli Qiang, Xiaoping Li, Jeffrey J. Morrell, Yao Yao, and Yanwei Su. 2021. "Preparation of Cellulose Nanoparticles from Foliage by Bio-Enzyme Methods" Materials 14, no. 16: 4557. https://doi.org/10.3390/ma14164557
APA StyleTang, Z., Yang, M., Qiang, M., Li, X., Morrell, J. J., Yao, Y., & Su, Y. (2021). Preparation of Cellulose Nanoparticles from Foliage by Bio-Enzyme Methods. Materials, 14(16), 4557. https://doi.org/10.3390/ma14164557