The Effect of the In-Situ Heat Treatment on the Martensitic Transformation and Specific Properties of the Fe-Mn-Si-Cr Shape Memory Alloys Processed by HSHPT Severe Plastic Deformation
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. TEM Observations
3.2. The Mechanical Properties of Ultra-Fine Structured Fe-Mn-Si-Cr Alloy
3.3. XRD Results
3.4. DSC Results
3.5. Magnetic Behavior
3.5.1. Low Temperature Thermo-Magnetic Measurements
3.5.2. High Temperature Thermo-Magnetic Measurements
3.5.3. Hysteresis Loops
3.6. Transport Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahesh, K.K.; Braz Fernandes, F.M.; Gurau, G. Stability of thermal-induced phase transformations in the severely deformed equiatomic Ni-Ti alloys. J. Mater. Sci. 2012, 47, 6005. [Google Scholar] [CrossRef]
- Kishia, Y.; Craciunescu, C.; Sato, M.; Okazaki, T.; Furuya, Y.; Wuttig, M. Microstructures and magnetic properties of rapidlysolidified CoNiGa ferromagnetic shape memoryalloys. J. Mag. Mag. Mater. 2003, 262, L186–L191. [Google Scholar] [CrossRef]
- Samothrakitis, S.; Buhl Larsen, C.; Woracek, R.; Heller, L.; Kopeček, J.; Gerstein, G.; Maier, H.J.; Rameš, M.; Tovar, M.; Šittner, P.; et al. A multiscale study of hot-extruded CoNiGa ferromagnetic shape-memory alloys. Mater. Des. 2020, 196, 109118. [Google Scholar] [CrossRef]
- Tejeda-Cruz, A.; Alvarado-Hernández, F.; Soto-Parra, D.E.; Ochoa-Gamboa, R.; Castillo-Villa, P.O.; Flores-Zú˜niga, H.; Haro-Rodriguez, S.; Santos-Beltrán, A.; Ríos-Jara, D. Microstructure, transformation temperatures, hardness and magnetic properties of Co36.4+xNi33.3−xGa30.3 ferromagnetic SMA. J. Alloys Compd. 2010, 499, 183–186. [Google Scholar] [CrossRef]
- Suru, M.G.; Paraschiv, A.L.; Lohan, N.M.; Pricop, B.; Ozkal, B.; Bujoreanu, L.G. Loading Mode and Environment Effects on Surface Profile Characteristics of Martensite Plates in Cu-Based SMAs. J. Mater. Eng. Perf. 2014, 23, 2669. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Barandiarán, J.M.; Lázpita, P.; Seguí, C.; Cesari, E. Magnetic properties of a rapidly quenched Ni–Mn–Ga shape memory alloy. Sens. Actuators A Phys. 2006, 129, 163. [Google Scholar] [CrossRef]
- Dunand, D.C.; Müllner, P. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 2011, 23, 216. [Google Scholar] [CrossRef] [PubMed]
- Barandiarán, J.M.; Chernenko, V.A.; Lázpita, P.; Gutiérrez, J.; Feuchtwanger, J. Effect of martensitic transformation and magnetic field on transport properties of Ni-Mn-Ga and Ni-Fe-Ga Heusler alloys. Phys. Rev. B 2009, 80, 104404. [Google Scholar] [CrossRef]
- Chernenko, V.A.; Oikawa, K.; Cheielus, M.; Besseghini, S.; Villa, E.; Albertini, F.; Roghi, L.; Paoluzi, A.; Mullner, P.; Kainuma, R.; et al. Properties of co-alloyed Ni-Fe-Ga ferromagnetic shape memory alloys. J. Mater. Eng. Perfor 2009, 18, 548. [Google Scholar] [CrossRef]
- Gulyaev, A. Some Features of γ-ε Martensitic Transformation and Shape MemoryEffect in Fe-Mn-Si Based alloys. J. Phys. IV Colloq. 1995, C8, 469–474. [Google Scholar]
- Gu, Q.; Van Humbeeck, J.; Delaey, L. A review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys. J. Phys. IV Colloq. 1994, C3, 135–144. [Google Scholar] [CrossRef]
- Sánchez-Alarcos, V.; Recarte, V.; Pérez-Landazábal, J.I.; González, M.A.; Rodríguez-Velamazán, J.A. Effect of Mn addition on the structural and magnetic properties of Fe–Pd ferromagnetic shape memory alloys. Acta Mater. 2009, 57, 4224. [Google Scholar] [CrossRef]
- Hayashi, R.; Murray, S.J.; Marioni, M.; Allen, S.M.; O’Handley, R.C. Magnetic and mechanical properties of FeNiCoTi magnetic shape memory alloy. Sens. Actuators A Phys. 2000, 81, 219. [Google Scholar] [CrossRef]
- Huang, P.; Peng, H.; Wang, S.; Zhou, T.; Wen, Y. Relationship between martensitic reversibility and different nano-phases in a FeMnAlNi shape memory alloy. Mater. Charact. 2016, 118, 22–28. [Google Scholar] [CrossRef]
- Koster, M.; Lee, W.J.; Schwarzenberger, M.; Leinenbach, C. Cyclic deformation and structural fatigue behavior of an FE-Mn-Si shape memory alloy. Mater. Sci. Eng. A 2015, 637, 29–39. [Google Scholar] [CrossRef]
- Stanford, N.; Dunne, D.P. Effect of Si on the reversibility of stress-induced martensite in Fe-Mn-Si shape memory alloys. Acta Mater. 2010, 58, 6752–6762. [Google Scholar] [CrossRef]
- Cladera, A.; Weber, B.; Leinenbach, C.; Czaderski, C.; Shahverdi, M.; Motavalli, M. Iron-based shape memory alloys for civil engineering structures: An overview. Constr. Build. Mater. 2014, 63, 281–293. [Google Scholar] [CrossRef]
- Stanford, N.; Dunne, D.P. Effect of second-phase particles on shape memory in Fe–Mn–Si-based alloys. Mater. Sci. Eng. A 2007, 454–455, 407–415. [Google Scholar] [CrossRef]
- Fuster, V.; Druker, A.V.; Baruj, A.; Malarría, J.; Bolmaro, R. Characterization of phases in an Fe-Mn-Si-Cr-Ni shape memory alloy processed by different thermomechanical methods. Mater. Charact. 2015, 109, 128–137. [Google Scholar] [CrossRef]
- Qin, Z.; Yu, M.; Zhang, Y. Neel transition and γ-ε transformation in polycrystalline Fe-Mn-Si shape memory alloys. J. Mater. Sci. 1996, 31, 2311–2315. [Google Scholar]
- Eskil, M.; Ceylan, M. Characterization of phase transformations and shape memory behavior of Fe-27.79Mn-2.72Si (wt%) alloy by thermomechanical and thermal treatments. J. Mater. Sci. 2009, 44, 3633–3642. [Google Scholar] [CrossRef]
- Bracke, L.; Kestensa, L.; Penning, J. Transformation mechanism of α′-martensite in an austenitic Fe-Mn-C-N alloy. Scr. Mater. 2007, 57, 385–388. [Google Scholar] [CrossRef]
- Souza Filho, I.R.; Kwiatkowski da Silva, A.; Sandim, M.J.R.; Ponge, D.; Gault, B.; Sandim, H.R.Z.; Raabe, D. Martensite to austenite reversion in a high-Mn steel: Partitioning- dependent two-stage kinetics revealed by atom probe tomography, in-situ magnetic measurements and simulation. Acta Mater. 2019, 166, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Greer, J.R.; De Hosson, J.T.M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 2011, 56, 654–724. [Google Scholar] [CrossRef]
- Glezer, A.M.; Sundeev, R.V. General view of severe plastic deformation in solid state. Mater. Lett. 2015, 139, 455–457. [Google Scholar] [CrossRef]
- Druker, A.V.; Baruj, A.; Isola, L.; Fuster, V.; Malarría, J.; Bolmaro, R. Gaining flexibility in the design of microstructure, texture and shape memory properties of an Fe-Mn-Si-Cr-Ni alloy processed by ECAE and annealing. Mater. Des. 2016, 107, 153–162. [Google Scholar] [CrossRef]
- Panigrahi, A.; Sulkowski, B.; Waitz, T.; Ozaltin, K.; Chrominski, W.; Pukenas, A.; Horky, J.; Lewandowska, M.; Skrotzki, W.; Zehetbauer, M. Mechanical properties, structural and texture evolution of biocompatible Ti-45Nb alloy processed by severe plastic deformation. J. Mech. Behav. Biomed. Mater. 2016, 62, 93–105. [Google Scholar] [CrossRef]
- Kang, J.Y.; Kim, J.G.; Kim, S.K.; Chin, K.-G.; Lee, S.; Kim, H.S. Outstanding mechanical properties of high-pressure torsion processed multiscale TWIP-cored three layer steel sheet. Scr. Mater. 2016, 123, 122–125. [Google Scholar] [CrossRef]
- An, X.H.; Lin, Q.Y.; Sha, G.; Huang, M.X.; Ringer, S.P.; Zhu, Y.T.; Liao, X.Z. Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion. Acta Mater. 2016, 109, 300–313. [Google Scholar] [CrossRef]
- López, G.A.; López-Ferreño, I.; Kilmametov, A.R.; Breczewski, T.; Straumal, B.B.; Baretzky, B.; Nó, M.L.; Juan, J.S. Severe plastic deformation on powder metallurgy Cu–Al–Ni shape memory alloys. Mater. Today Proc. 2015, 2, S747–S750. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, Y.-H.; Li, N.; Huang, S.-K. Remarkable improvement of recovery stress of Fe–Mn–Si shape memory alloy fabricated by equal channel angular pressing. Mater. Sci. Eng. A 2007, 454–455, 19–23. [Google Scholar] [CrossRef]
- Gurǎu, G.; Gurǎu, C.; Potecaşu, O.; Alexandru, P.; Bujoreanu, L.G. Novel high speed high pressure torsion technology for obtaining Fe-Mn-SiCr shape memory alloy active elements. J. Mater. Eng. Perform. 2014, 23, 2396–2402. [Google Scholar] [CrossRef]
- Gurau, G.; Gurau, C.; Fernandes, F.M.B.; Bujoreanu, L.G. A comparative study of austenitic structure in NiTi and Fe based shape memory alloys after severe plastic deformation. Mater. Today Proc. 2015, 2, S905–S908. [Google Scholar] [CrossRef]
- Chowdhury, P.; Canadinc, D.; Sehitoglu, H. On deformation behavior of Fe-Mn based structural alloys. Mater. Sci. Eng. R Rep. 2017, 122, 1–28. [Google Scholar] [CrossRef]
- AWAJI Materia Co., LTD. Japanese Site. Available online: http://www.awaji-m.jp/english/company/profile.html (accessed on 9 March 2017).
- Karimi, M.; Toroghinejad, M.R.; Dutkiewicz, J. Nanostructure formation during accumulative roll bonding of commercial purity titanium. Mater. Charact. 2016, 122, 98–103. [Google Scholar] [CrossRef]
- Nikulin, I.; Sawaguchi, T.; Ogawa, K.; Tsuzaki, K. Effect of γ to ε martensitic transformation on low-cycle fatigue behaviour and fatigue microstructure of Fee15Mne10Cre8NiexSi austenitic alloys. Acta Mater. 2016, 105, 207–218. [Google Scholar] [CrossRef]
- Guerrero, L.M.; La Roca, P.; Malamud, F.; Baruj, A.; Sade, M. Composition effects on the fcc-hcp martensitic transformation and on the magnetic ordering of the fcc structure in Fe-Mn-Cr alloys. Mater. Des. 2017, 116, 127–135. [Google Scholar] [CrossRef]
- Sari, U.; Kirindi, T.; Yӳksel, M.; Agan, S. Influence of Mo and Co on the magnetic properties and martensitic transformation characteristics of a Fe-Mn alloy. J. Alloys Compd. 2009, 476, 160–163. [Google Scholar] [CrossRef]
- Gebhardt, T.; Music, D.; Ekholm, M.; Abrikosov, I.A.; Von Appen, J.; Dronskowski, R.; Wagner, D.; Mayer, J.; Schneider, J.M. Influence of chemical composition and magnetic effects on the elastic properties of fcc Fe-Mn alloys. Acta Mater. 2011, 59, 1493–1501. [Google Scholar] [CrossRef]
- Kim, Y.S.; Choi, E.; Kim, W.J. Characterization of the microstructures and the shape memory properties of the Fe-Mn-Si-Cr-Ni-C shape memory alloy after severe plastic deformation by differential speed rolling and subsequent annealing. Mater. Charact. 2018, 136, 12–19. [Google Scholar] [CrossRef]
- Andersson, M.; Forsberg, A.; Agren, J. Martensitic and magnetic transformations in Fe-Mn-Si shape memory alloys. In Ecomaterials; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar] [CrossRef]
- Valeanu, M.; Filoti, G.; Kuncser, V.; Tolea, F.; Popescu, B.; Galatanu, A. Shape memory and associated properties in Fe-Mn-Si-based ribbons produced by melt-spinning. J. Magn. Magn. Mater. 2008, 320, e164–e167. [Google Scholar] [CrossRef]
- Bouraoui, T.; Van Neste, A.; Dubois, B. Comparative Effects of Thermal Treatments on the Shape Memory Phenomenon of Fe-Mn-Si and Fe-Mn-Cr-Ni-Si Steels. J. Phys. IV Colloq. 1995, C8, 403–408. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Y.G.; Wan, J.F.; Zhang, J.H.; Rong, Y.H. Magnetic thermal hysteresis due to paramagnetic-antiferromagnetic transition in Fe-24.4Mn-5.9Si-5.1Cr alloy. AIP Adv. 2013, 3, 082126. [Google Scholar] [CrossRef] [Green Version]
- Moszner, F.; Povoden-Karadeniz, E.; Pogatscher, S.; Uggowitzer, P.J.; Estrin, Y.; Gerstl, S.S.A.; Kozeschnik, E.; Löffler, J.F. Reverse α’→γ transformation mechanisms of martensitic Fe-Mn and age-hardenable Fe-Mn-Pd alloy upon fast and slow continuous heating. Acta Mater. 2014, 72, 99–109. [Google Scholar] [CrossRef]
- Souza Filho, I.R.; Sandima, M.J.R.; Cohen, R.; Nagaminec, L.C.C.M.; Sandima, H.R.Z.; Raabe, D. Magnetic properties of a 17.6 Mn-TRIP steel: Study of strain-induced martensite formation, austenite reversion, and athermal α′-formation. J. Mag. Mag. Mater. 2019, 473, 109–118. [Google Scholar] [CrossRef]
- Nevin Balo, S. A Comparative Study on Crystal Structure and Magnetic Properties of Fe-Mn-Si and Fe-Mn-Si-Cr Alloys. J. Supercond. Nov. Magn. 2013, 26, 1085–1088. [Google Scholar] [CrossRef]
- Chernenko, V.A.; Cesari, E.; Kokorin, V.V.; Vitenko, I.N. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system. Scr. Metall. Mater. 1995, 33, 1239–1244. [Google Scholar] [CrossRef]
- Opahle, I.; Koepernik, K.; Nitzsche, U.; Richter, M. Jahn–Teller-like origin of the tetragonal distortion in disordered Fe-Pd magnetic shape memory alloys. Appl. Phys. Lett. 2009, 94, 072508. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. A study on the Neel transition and the Kondo-like effect of y-Fe-Mn-Si alloys. J. Phys. F Met. Phys. 1988, 18, L229–L235. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Lu, X.; Tian, X.; Qin, Z. Compositional dependence of the Néel transition, structural stability, magnetic properties and electrical resistivity in Fe-Mn-Al-Cr-Si alloys. Mater. Sci. Eng. A 2002, 334, 19–27. [Google Scholar] [CrossRef]
- Tolea, F.; Tolea, M.; Sofronie, M.; Popescu, B.; Crisan, A.; Leca, A.; Valeanu, M. Specific changes in the magnetoresistance of Ni-Fe-Ga Heusler alloys induced by Cu, Co and Al substitutions. IEEE Trans. Magn. 2015, 51, 2500404. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurau, C.; Gurau, G.; Tolea, F.; Popescu, B.; Banu, M.; Bujoreanu, L.-G. The Effect of the In-Situ Heat Treatment on the Martensitic Transformation and Specific Properties of the Fe-Mn-Si-Cr Shape Memory Alloys Processed by HSHPT Severe Plastic Deformation. Materials 2021, 14, 4621. https://doi.org/10.3390/ma14164621
Gurau C, Gurau G, Tolea F, Popescu B, Banu M, Bujoreanu L-G. The Effect of the In-Situ Heat Treatment on the Martensitic Transformation and Specific Properties of the Fe-Mn-Si-Cr Shape Memory Alloys Processed by HSHPT Severe Plastic Deformation. Materials. 2021; 14(16):4621. https://doi.org/10.3390/ma14164621
Chicago/Turabian StyleGurau, Carmela, Gheorghe Gurau, Felicia Tolea, Bogdan Popescu, Mihaela Banu, and Leandru-Gheorghe Bujoreanu. 2021. "The Effect of the In-Situ Heat Treatment on the Martensitic Transformation and Specific Properties of the Fe-Mn-Si-Cr Shape Memory Alloys Processed by HSHPT Severe Plastic Deformation" Materials 14, no. 16: 4621. https://doi.org/10.3390/ma14164621
APA StyleGurau, C., Gurau, G., Tolea, F., Popescu, B., Banu, M., & Bujoreanu, L. -G. (2021). The Effect of the In-Situ Heat Treatment on the Martensitic Transformation and Specific Properties of the Fe-Mn-Si-Cr Shape Memory Alloys Processed by HSHPT Severe Plastic Deformation. Materials, 14(16), 4621. https://doi.org/10.3390/ma14164621