Multi-Scale Structure–Mechanical Property Relations of Graphene-Based Layer Materials
Abstract
:1. Introduction
2. Theoretical Models of GLMs
2.1. Theoretical Models for Tension Behaviors of Monolayer Graphene
2.2. Theoretical Models for Tensile Behaviors of Nacre-Like Structures
2.3. Theoretical Models for Bending Behaviors of Laminar Structure
2.4. Theoretical Models for Out-of-Plane Deformations of GLMs
3. Mechanical Behaviors of Graphene at Nanoscale
3.1. Mechanical Behaviors of Monolayer Graphene
3.2. Bending Behaviors of Multilayer Graphene
3.3. In-Plane Mechanical Behaviors of Multilayer Graphene
4. Structure–Property Relations of Graphene Assemblies
4.1. Conformations of GO Macromolecules
4.2. 1D Graphene Fiber Structures
4.3. 2D Graphene Thin Films
4.4. 3D Graphene Porous Structures
5. Structure–Property Relations of Graphene/Polymer Nanocomposites
5.1. Graphene Dispersed in Polymer Matrix
5.2. Polymer Infiltrated into Graphene Scaffold
5.3. Graphene/Polymer Bi-Continuous Lamina Composites
5.4. Nacre-Like Graphene Nanocomposites
6. Multi-Scale Mechanical Property Optimization of GLMs
7. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GO | Graphene oxide |
rGO | Reduced graphene oxide |
GPs | Graphene papers |
GFs | Graphene fibers |
GAs | Graphene aerogels |
GLNs | Graphene layered nanostructures |
GLMs | Graphene-based layer materials |
DFT | Density functional theory |
MD | Molecule dynamics |
GBs | Grain boundaries |
DTS | Deformable tension-shear |
vdW | van der Waals |
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Weitz, R.T.; Bittner, A.M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503. [Google Scholar] [CrossRef]
- You, R.; Liu, Y.Q.; Hao, Y.L.; Han, D.D.; Zhang, Y.L.; You, Z. Laser Fabrication of Graphene-Based Flexible Electronics. Adv. Mater. 2020, 32, e1901981. [Google Scholar] [CrossRef]
- Mehmood, A.; Mubarak, N.M.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Siddiqui, M.T.H.; Baloch, H.A.; Nizamuddin, S.; Mazari, S. Graphene based nanomaterials for strain sensor application—A review. J. Environ. Chem. Eng. 2020, 8, 103743. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Luo, S.; Chen, X.; He, Y.; Gu, Y.; Zhu, C.; Yang, G.H.; Qu, L.L. Recent advances in graphene nanoribbons for biosensing and biomedicine. J. Mater. Chem. B 2021. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Peng, L.; Liu, Y.; Liu, Z.; Sun, H.; Gao, W.; Gao, C. Experimental guidance to graphene macroscopic wet-spun fibers, continuous papers, and ultralightweight aerogels. Chem. Mater. 2017, 29, 319–330. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 2013, 25, 188–193. [Google Scholar] [CrossRef]
- Sun, H.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Müller, M.B.; Gilmore, K.J.; Wallace, G.G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557–3561. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hong, W.; Bai, H.; Li, C.; Shi, G. Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 2009, 47, 3538–3543. [Google Scholar] [CrossRef]
- Deng, S.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212. [Google Scholar] [CrossRef]
- Zhao, X.; Papageorgiou, D.G.; Zhu, L.; Ding, F.; Young, R.J. The strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate. Nanoscale 2019, 11, 14339–14353. [Google Scholar] [CrossRef]
- Stafford, J.; Patapas, A.; Uzo, N.; Matar, O.K.; Petit, C. Towards scale-up of graphene production via nonoxidizing liquid exfoliation methods. AIChE J. 2018, 64, 3246–3276. [Google Scholar] [CrossRef]
- Verguts, K.; Coroa, J.; Huyghebaert, C.; De Gendt, S.; Brems, S. Graphene delamination using ‘electrochemical methods’: An ion intercalation effect. Nanoscale 2018, 10, 5515–5521. [Google Scholar] [CrossRef]
- Deokar, G.; Casanova-Cháfer, J.; Rajput, N.S.; Aubry, C.; Llobet, E.; Jouiad, M.; Costa, P.M.F.J. Wafer-scale few-layer graphene growth on Cu/Ni films for gas sensing applications. Sens. Actuators B Chem. 2020, 305, 127458. [Google Scholar] [CrossRef]
- Gao, B.; Hu, C.; Fu, H.; Sun, Y.; Li, K.; Hu, L. Preparation of single-layer graphene based on a wet chemical synthesis route and the effect on electrochemical properties by double layering surface functional groups to modify graphene oxide. Electrochim. Acta 2020, 361, 137053. [Google Scholar] [CrossRef]
- López-Polín, G.; Gómez-Navarro, C.; Parente, V.; Guinea, F.; Katsnelson, M.I.; Pérez-Murano, F.; Gómez-Herrero, J. Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 2014, 11, 26–31. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, B.; Zhang, Z.; Zheng, Q.; Xu, Z. Mechanical properties of graphene papers. J. Mech. Phys. Solids 2012, 60, 591–605. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, Z. Multimodal and self-healable interfaces enable strong and tough graphene-derived materials. J. Mech. Phys. Solids 2014, 70, 30–41. [Google Scholar] [CrossRef]
- He, Z.; Zhu, Y.; Xia, J.; Wu, H. Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. J. Mech. Phys. Solids 2019, 133, 103706. [Google Scholar] [CrossRef]
- De Andres, P.; Ramírez, R.; Vergés, J.A. Strong covalent bonding between two graphene layers. Phys. Rev. B 2008, 77, 045403. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Truong, T.N. Nature of interlayer carbon–carbon covalent bonding in graphene-based materials. Theor. Chem. Acc. 2019, 138, 1–8. [Google Scholar] [CrossRef]
- Medhekar, N.V.; Ramasubramaniam, A.; Ruoff, R.S.; Shenoy, V.B. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 2010, 4, 2300–2306. [Google Scholar] [CrossRef]
- Compton, O.C.; Cranford, S.W.; Putz, K.W.; An, Z.; Brinson, L.C.; Buehler, M.J.; Nguyen, S.T. Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano 2012, 6, 2008–2019. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yi, C.; Ke, C. Bending stiffness and interlayer shear modulus of few-layer graphene. Appl. Phys. Lett. 2015, 106, 101907. [Google Scholar] [CrossRef]
- Peng, S.; Wei, Y. On the influence of interfacial properties to the bending rigidity of layered structures. J. Mech. Phys. Solids 2016, 92, 278–296. [Google Scholar] [CrossRef] [Green Version]
- Han, E.; Yu, J.; Annevelink, E.; Son, J.; Kang, D.A.; Watanabe, K.; Taniguchi, T.; Ertekin, E.; Huang, P.Y.; van der Zande, A.M. Ultrasoft slip-mediated bending in few-layer graphene. Nat. Mater. 2020, 19, 305–309. [Google Scholar] [CrossRef]
- Qin, H.; Yan, Y.; Liu, H.; Liu, J.; Zhang, Y.-W.; Liu, Y. Modified Timoshenko beam model for bending behaviors of layered materials and structures. Extrem. Mech. Lett. 2020, 39, 100799. [Google Scholar] [CrossRef]
- Pan, F.; Wang, G.; Liu, L.; Chen, Y.; Zhang, Z.; Shi, X. Bending induced interlayer shearing, rippling and kink buckling of multilayered graphene sheets. J. Mech. Phys. Solids 2019, 122, 340–363. [Google Scholar] [CrossRef]
- Ren, M.; Liu, Y.; Liu, J.Z.; Wang, L.; Zheng, Q. Anomalous elastic buckling of layered crystalline materials in the absence of structure slenderness. J. Mech. Phys. Solids 2016, 88, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Parvaneh, V.; Ramezani, A.; Asadollahi Yazdi, H.; Haji Mohammadi, A.; Heydari, M. The prediction of critical buckling load of graphene sheet with different boundary conditions by a structural mechanics model. Microsyst. Technol. 2020, 27, 629–638. [Google Scholar] [CrossRef]
- Korobeynikov, S.N.; Alyokhin, V.V.; Babichev, A.V. Advanced nonlinear buckling analysis of a compressed single layer graphene sheet using the molecular mechanics method. Int. J. Mech. Sci. 2021, 209, 106703. [Google Scholar] [CrossRef]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, Y.; Shi, S.; Xu, Z.; Ma, W.; Wang, Z.; Liu, S.; Gao, C. Highly Crystalline Graphene Fibers with Superior Strength and Conductivities by Plasticization Spinning. Adv. Funct. Mater. 2020, 30, 2006584. [Google Scholar] [CrossRef]
- Wang, J.; Ellsworth, M. Graphene aerogels. ECS Trans. 2009, 19, 241. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Lei, Z.; Huang, L.; Wu, T.; Liu, S.; Ye, G.; Lu, Y.; Wang, X. Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere. Chem. Eng. J. 2020, 402, 126256. [Google Scholar] [CrossRef]
- Dang, F.; Yang, P.; Zhao, W.; Liu, J.Z.; Wu, H.; Liu, A.; Liu, Y. Tuning capacitance of graphene films via a robust routine of adjusting their hierarchical structures. Electrochim. Acta 2019, 298, 254–264. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Li, P.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103–7113. [Google Scholar] [CrossRef] [PubMed]
- Layek, R.K.; Nandi, A.K. A review on synthesis and properties of polymer functionalized graphene. Polymer 2013, 54, 5087–5103. [Google Scholar] [CrossRef] [Green Version]
- Ramezanzadeh, B.; Ghasemi, E.; Mahdavian, M.; Changizi, E.; Moghadam, M.M. Characterization of covalently-grafted polyisocyanate chains onto graphene oxide for polyurethane composites with improved mechanical properties. Chem. Eng. J. 2015, 281, 869–883. [Google Scholar] [CrossRef]
- Huang, C.; Peng, J.; Wan, S.; Du, Y.; Dou, S.; Wagner, H.D.; Tomsia, A.P.; Jiang, L.; Cheng, Q. Ultra-Tough Inverse Artificial Nacre Based on Epoxy-Graphene by Freeze-Casting. Angew. Chem. Int. Ed. 2019, 58, 7636–7640. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Huang, C.; Cao, C.; Saiz, E.; Du, Y.; Dou, S.; Tomsia, A.P.; Wagner, H.D.; Jiang, L.; Cheng, Q. Inverse nacre-like epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring. Matter 2020, 2, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, J.; Xu, Z.; Liu, Y.; Li, P.; Guo, F.; Wang, F.; Liu, Y.; Yang, M.; Gao, W.; et al. Artificial Bicontinuous Laminate Synergistically Reinforces and Toughens Dilute Graphene Composites. ACS Nano 2018, 12, 11236–11243. [Google Scholar] [CrossRef] [PubMed]
- Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.; Huang, R.; Kim, J.-S.; Li, T.; Li, Y.; et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extrem. Mech. Lett. 2017, 13, 42–77. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Sorkin, V.; Pei, Q.-X.; Liu, Y.; Zhang, Y.-W. Failure in Two-Dimensional Materials: Defect Sensitivity and Failure Criteria. J. Appl. Mech. 2020, 87, 030802. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, W.; Ullah, Z.; Sonil, N.I.; Khan, K. Introduction, production, characterization and applications of defects in graphene. J. Mater. Sci. Mater. Electron. 2021, 32, 19991–20030. [Google Scholar] [CrossRef]
- Adetayo, A.; Runsewe, D. Synthesis and fabrication of graphene and graphene oxide: A review. Open J. Compos. Mater. 2019, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Karthick, R.; Chen, F. Free-standing graphene paper for energy application: Progress and future scenarios. Carbon 2019, 150, 292–310. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, C. Graphene fiber: A new trend in carbon fibers. Mater. Today 2015, 18, 480–492. [Google Scholar] [CrossRef]
- Fang, B.; Chang, D.; Xu, Z.; Gao, C. A Review on Graphene Fibers: Expectations, Advances, and Prospects. Adv. Mater. 2020, 32, e1902664. [Google Scholar] [CrossRef] [PubMed]
- Gorgolis, G.; Galiotis, C. Graphene aerogels: A review. 2D Mater. 2017, 4, 032001. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Mao, J. Aligned-graphene composites: A review. J. Mater. Sci. 2019, 54, 36–61. [Google Scholar] [CrossRef]
- Li, A.; Zhang, C.; Zhang, Y.F. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers 2017, 9, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Ming, P.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Min, K.; Aluru, N.R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 2009, 9, 3012–3015. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Yan, C.; Ma, L.; Hu, N.; Chen, M.W. Effect of defects on fracture strength of graphene sheets. Comput. Mater. Sci. 2012, 54, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Rajasekaran, G.; Kumar, R.; Parashar, A. Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment. Mater. Res. Express 2016, 3, 035011. [Google Scholar] [CrossRef]
- Jensen, B.D.; Wise, K.E.; Odegard, G.M. Simulation of the Elastic and Ultimate Tensile Properties of Diamond, Graphene, Carbon Nanotubes, and Amorphous Carbon Using a Revised ReaxFF Parametrization. J. Phys. Chem A 2015, 119, 9710–9721. [Google Scholar] [CrossRef] [PubMed]
- Baykasoglu, C.; Mugan, A. Nonlinear fracture analysis of single-layer graphene sheets. Eng. Fract. Mech. 2012, 96, 241–250. [Google Scholar] [CrossRef]
- Xu, M.; Paci, J.T.; Oswald, J.; Belytschko, T. A constitutive equation for graphene based on density functional theory. Int. J. Solids Struct. 2012, 49, 2582–2589. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Parks, D.M. On the hyperelastic softening and elastic instabilities in graphene. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140567. [Google Scholar] [CrossRef]
- Wei, X.; Fragneaud, B.; Marianetti, C.A.; Kysar, J.W. Nonlinear elastic behavior of graphene:Ab initiocalculations to continuum description. Phys. Rev. B 2009, 80, 205407. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.Z.; Ahmed, T.; Silverman, B.; Khawaja, M.S.; Calderon, J.; Rutten, A.; Tse, S. Anisotropic toughness and strength in graphene and its atomistic origin. J. Mech. Phys. Solids 2018, 110, 118–136. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, J.; Yin, H.; Shi, X.; Yang, R.; Dresselhaus, M. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 2012, 11, 759–763. [Google Scholar] [CrossRef]
- Fox, A.; Ray, U.; Li, T. Strength of graphene grain boundaries under arbitrary in-plane tension. Carbon 2019, 142, 388–400. [Google Scholar] [CrossRef]
- Shekhawat, A.; Ritchie, R.O. Toughness and strength of nanocrystalline graphene. Nat. Commun. 2016, 7, 10546. [Google Scholar] [CrossRef] [Green Version]
- Read, W.T.; Shockley, W. Dislocation models of crystal grain boundaries. Phys. Rev. 1950, 78, 275. [Google Scholar] [CrossRef]
- Huang, W.; Mura, T. Elastic fields and energies of a circular edge disclination and a straight screw disclination. J. Appl. Phys. 1970, 41, 5175–5179. [Google Scholar] [CrossRef]
- Li, J.C.M. Disclination model of high angle grain boundaries. Surf. Sci. 1972, 31, 12–26. [Google Scholar] [CrossRef]
- Meng, F.; Chen, C.; Song, J. Dislocation Shielding of a Nanocrack in Graphene: Atomistic Simulations and Continuum Modeling. J. Phys. Chem. Lett. 2015, 6, 4038–4042. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Gao, H. Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 2004, 52, 1963–1990. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.W.; Gao, H. On optimal hierarchy of load-bearing biological materials. Proc. Biol. Sci. 2011, 278, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Timoshenko, S.P.X. On the transverse vibrations of bars of uniform cross-section. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1922, 43, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Timoshenko, S.P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1921, 41, 744–746. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, Z.; Zheng, Q. The interlayer shear effect on graphene multilayer resonators. J. Mech. Phys. Solids 2011, 59, 1613–1622. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, H. Interlayer shear effect on multilayer graphene subjected to bending. Appl. Phys. Lett. 2012, 100, 101909. [Google Scholar] [CrossRef]
- Liu, D.; Chen, W.; Zhang, C. Improved beam theory for multilayer graphene nanoribbons with interlayer shear effect. Phys. Lett. A 2013, 377, 1297–1300. [Google Scholar] [CrossRef]
- Abedpour, N.; Neek-Amal, M.; Asgari, R.; Shahbazi, F.; Nafari, N.; Tabar, M.R.R. Roughness of undoped graphene and its short-range induced gauge field. Phys. Rev. B 2007, 76, 195407. [Google Scholar] [CrossRef] [Green Version]
- Fasolino, A.; Los, J.H.; Katsnelson, M.I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Huang, R. Thermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity. J. Mech. Phys. Solids 2014, 66, 42–58. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y.; Wang, C. A theoretical study of wrinkle propagation in graphene with flower-like grain boundaries. Phys. Chem Chem Phys. 2021, 23, 11917–11930. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Guo, J.; Pan, E. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium. Appl. Math. Mech. 2021, 42, 1077–1094. [Google Scholar] [CrossRef]
- Xu, S.; Irle, S.; Musaev, D.; Lin, M.-C. Quantum chemical study of the dissociative adsorption of OH and H2O on pristine and defective graphite (0001) surfaces: Reaction mechanisms and kinetics. J. Phys. Chem. C 2007, 111, 1355–1365. [Google Scholar] [CrossRef]
- Thompson-Flagg, R.C.; Moura, M.J.B.; Marder, M. Rippling of graphene. EPL (Europhys. Lett.) 2009, 85, 46002. [Google Scholar] [CrossRef]
- Elder, K.R.; Achim, C.V.; Heinonen, V.; Granato, E.; Ying, S.C.; Ala-Nissila, T. Modeling buckling and topological defects in stacked two-dimensional layers of graphene and hexagonal boron nitride. Phys. Rev. Mater. 2021, 5, 034004. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, L.; Fan, F.; Zeng, Z.; Peng, C.; Loya, P.E.; Liu, Z.; Gong, Y.; Zhang, J.; Zhang, X.; et al. Fracture toughness of graphene. Nat. Commun. 2014, 5, 3782. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Asl, M.S.; Namini, A.S.; Ahmadi, Z.; Delbari, S.A.; Van Le, Q.; Shokouhimehr, M.; Mohammadi, M. Enhanced fracture toughness of ZrB2–SiCw ceramics with graphene nano-platelets. Ceram. Int. 2020, 46, 24906–24915. [Google Scholar] [CrossRef]
- Gogotsi, G.A. Fracture toughness of ceramics and ceramic composites. Ceram. Int. 2003, 29, 777–784. [Google Scholar] [CrossRef]
- Jing, N.; Xue, Q.; Ling, C.; Shan, M.; Zhang, T.; Zhou, X.; Jiao, Z. Effect of defects on Young’s modulus of graphene sheets: A molecular dynamics simulation. RSC Adv. 2012, 2, 9124–9129. [Google Scholar] [CrossRef]
- Fedorov, A.; Popov, Z.; Fedorov, D.; Eliseeva, N.; Serjantova, M.; Kuzubov, A. DFT investigation of the influence of ordered vacancies on elastic and magnetic properties of graphene and graphene-like SiC and BN structures. Phys. Status Solidi 2012, 249, 2549–2552. [Google Scholar] [CrossRef]
- Sun, X.; Fu, Z.; Xia, M.; Xu, Y. Effects of vacancy defect on the tensile behavior of graphene. Theor. Appl. Mech. Lett. 2014, 4, 051002. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, C.; Maroudas, D.; Ramasubramaniam, A. Mechanical properties of irradiated single-layer graphene. Appl. Phys. Lett. 2013, 103, 013102. [Google Scholar] [CrossRef]
- Suk, J.W.; Hao, Y.; Liechti, K.M.; Ruoff, R.S. Impact of Grain Boundaries on the Elastic Behavior of Transferred Polycrystalline Graphene. Chem. Mater. 2020, 32, 6078–6084. [Google Scholar] [CrossRef]
- Han, Z.; Shi, Q.; Gong, H.; Zhang, Z.; Wu, J. Mechanical strength in hierarchically polycrystalline graphene with dislocation arrays-embedded grains. Mater. Res. Express 2018, 5, 115019. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, G.; Zhu, Q.; Wang, J.; Tang, S.; Gao, L. Enhancing the Strength of Graphene by a Denser Grain Boundary. ACS Nano 2018, 12, 4529–4535. [Google Scholar] [CrossRef]
- Mukherjee, S.; Alicandri, R.; Singh, C.V. Strength of graphene with curvilinear grain boundaries. Carbon 2020, 158, 808–817. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Gao, H. Designing graphene structures with controlled distributions of topological defects: A case study of toughness enhancement in graphene ruga. Extrem. Mech. Lett. 2014, 1, 3–8. [Google Scholar] [CrossRef]
- Pang, J.; Li, S.; Wang, Z.; Zhang, Z. General relation between tensile strength and fatigue strength of metallic materials. Mater. Sci. Eng. A 2013, 564, 331–341. [Google Scholar] [CrossRef]
- Shen, C.-H.; Springer, G.S. Effects of moisture and temperature on the tensile strength of composite materials. J. Compos. Mater. 1977, 11, 2–16. [Google Scholar] [CrossRef]
- Grantab, R.; Shenoy, V.B.; Ruoff, R.S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 2010, 330, 946–948. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.K.; Sharma, B.B.; Chaurasia, A.; Parashar, A. Inter-granular fracture toughness of bi-crystalline graphene nanosheets. Diam. Relat. Mater. 2020, 102, 107667. [Google Scholar] [CrossRef]
- Cao, C.; Mukherjee, S.; Howe, J.Y.; Perovic, D.D.; Sun, Y.; Singh, C.V.; Filleter, T. Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers. Sci. Adv. 2018, 4, eaao7202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Parashar, A. Reactive force field based atomistic simulations to study fracture toughness of bicrystalline graphene functionalised with oxide groups. Diam. Relat. Mater. 2018, 88, 193–203. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Wang, Y.; Wang, Y.; Zhang, Y.; Xu, C.; Zou, Z.; Wu, Z.; Xia, Y.; Zhao, P.; et al. Crack Propagation and Fracture Toughness of Graphene Probed by Raman Spectroscopy. ACS Nano 2019, 13, 10327–10332. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Poot, M.; Steele, G.A.; Van Der Zant, H.S.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Dai, Z.; Xiao, J.; Feng, S.; Weng, C.; Liu, L.; Xu, Z.; Huang, R.; Zhang, Z. Bending of Multilayer van der Waals Materials. Phys. Rev. Lett. 2019, 123, 116101. [Google Scholar] [CrossRef]
- Wang, G.; Dai, Z.; Wang, Y.; Tan, P.; Liu, L.; Xu, Z.; Wei, Y.; Huang, R.; Zhang, Z. Measuring interlayer shear stress in bilayer graphene. Phys. Rev. Lett. 2017, 119, 036101. [Google Scholar] [CrossRef]
- Trevethan, T.; Dyulgerova, P.; Latham, C.D.; Heggie, M.I.; Seabourne, C.R.; Scott, A.J.; Briddon, P.R.; Rayson, M.J. Extended interplanar linking in graphite formed from vacancy aggregates. Phys. Rev. Lett. 2013, 111, 095501. [Google Scholar] [CrossRef] [Green Version]
- Karthik, C.; Kane, J.; Butt, D.P.; Windes, W.; Ubic, R. In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite. J. Nucl. Mater. 2011, 412, 321–326. [Google Scholar] [CrossRef]
- Daly, M.; Cao, C.; Sun, H.; Sun, Y.; Filleter, T.; Singh, C.V. Interfacial Shear Strength of Multilayer Graphene Oxide Films. ACS Nano 2016, 10, 1939–1947. [Google Scholar] [CrossRef]
- Wan, S.; Fang, S.; Jiang, L.; Cheng, Q.; Baughman, R.H. Strong, conductive, foldable graphene sheets by sequential ionic and π bridging. Adv. Mater. 2018, 30, 1802733. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ling, S.; Liang, X.; Wang, H.; Lu, H.; Zhang, Y. Self-Healable Multifunctional Electronic Tattoos Based on Silk and Graphene. Adv. Funct. Mater. 2019, 29, 1808695. [Google Scholar] [CrossRef]
- Yang, S.; Li, L.; Pei, Z.; Li, C.; Shan, X.-q.; Wen, B.; Zhang, S.; Zheng, L.; Zhang, J.; Xie, Y.; et al. Effects of humic acid on copper adsorption onto few-layer reduced graphene oxide and few-layer graphene oxide. Carbon 2014, 75, 227–235. [Google Scholar] [CrossRef]
- Gao, E.; Cao, Y.; Liu, Y.; Xu, Z. Optimizing interfacial cross-linking in graphene-derived materials, which balances intralayer and interlayer load transfer. ACS Appl. Mater. Interfaces 2017, 9, 24830–24839. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Sun, Y.; Liu, J.Z.; Liu, Y.J.C. Mechanical properties of wrinkled graphene generated by topological defects. Carbon 2016, 108, 204–214. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, G. Assembly of chemically modified graphene: Methods and applications. J. Mater. Chem. 2011, 21, 3311–3323. [Google Scholar] [CrossRef]
- Ma, X.; Zachariah, M.R.; Zangmeister, C.D. Crumpled nanopaper from graphene oxide. Nano Lett. 2012, 12, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Garland, C.W.; Hwa, T.; Kardar, M.; Kokufuta, E.; Li, Y.; Orkisz, M.; Tanaka, T. Crumpled and collapsed conformation in graphite oxide membranes. Nature 1992, 355, 426–428. [Google Scholar] [CrossRef]
- Whitby, R.L.; Korobeinyk, A.; Gun’ko, V.M.; Busquets, R.; Cundy, A.B.; Laszlo, K.; Skubiszewska-Zieba, J.; Leboda, R.; Tombacz, E.; Toth, I.Y.; et al. pH-driven physicochemical conformational changes of single-layer graphene oxide. Chem. Commun. 2011, 47, 9645–9647. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xu, Z.; Liu, Y.; Peng, L.; Xi, J.; Fang, B.; Guo, F.; Li, P.; Gao, C. Sheet Collapsing Approach for Rubber-like Graphene Papers. ACS Nano 2017, 11, 8092–8102. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Li, P.; Rajendran, S.; Xu, Z.; Liu, S.; Guo, F.; He, Y.; Li, Z.; Xu, Z.; et al. Conformational Phase Map of Two-Dimensional Macromolecular Graphene Oxide in Solution. Matter 2020, 3, 230–245. [Google Scholar] [CrossRef]
- Li, P.; Wang, S.; Meng, F.; Wang, Y.; Guo, F.; Rajendran, S.; Gao, C.; Xu, Z.; Xu, Z. Conformational Scaling Relations of Two-Dimensional Macromolecular Graphene Oxide in Solution. Macromolecules 2020, 53, 10421–10430. [Google Scholar] [CrossRef]
- Koltonow, A.R.; Luo, C.; Luo, J.; Huang, J. Graphene oxide sheets in solvents: To crumple or not to crumple? ACS Omega 2017, 2, 8005–8009. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Xu, Z.; Liu, Y.; Fang, B.; Peng, L.; Xi, J.; Li, Z.; Gao, C. Dry spinning approach to continuous graphene fibers with high toughness. Nanoscale 2017, 9, 12335–12342. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Xiao, Y.; Xu, Z.; Chang, D.; Wang, B.; Gao, W.; Gao, C. Handedness-controlled and solvent-driven actuators with twisted fibers. Mater. Horiz. 2019, 6, 1207–1214. [Google Scholar] [CrossRef]
- Hu, X.; Xu, Z.; Liu, Z.; Gao, C. Liquid crystal self-templating approach to ultrastrong and tough biomimic composites. Sci. Rep. 2013, 3, 2374. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449–6456. [Google Scholar] [CrossRef]
- Xin, G.; Zhu, W.; Deng, Y.; Cheng, J.; Zhang, L.T.; Chung, A.J.; De, S.; Lian, J. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat. Nanotechnol. 2019, 14, 168–175. [Google Scholar] [CrossRef]
- Xin, G.; Yao, T.; Sun, H.; Scott, S.M.; Shao, D.; Wang, G.; Lian, J. Highly thermally conductive and mechanically strong graphene fibers. Science 2015, 349, 1083–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, Y.; Ming, P.; Zhang, Q.; Liu, T.; Jiang, L.; Cheng, Q. Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening. Adv. Mater. 2016, 28, 2834–2839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Peng, J.; Li, M.; Saiz, E.; Wolf, S.E.; Cheng, Q. Bioinspired Supertough Graphene Fiber through Sequential Interfacial Interactions. ACS Nano 2018, 12, 8901–8908. [Google Scholar] [CrossRef]
- Wang, X.; Peng, J.; Zhang, Y.; Li, M.; Saiz, E.; Tomsia, A.P.; Cheng, Q. Ultratough Bioinspired Graphene Fiber via Sequential Toughening of Hydrogen and Ionic Bonding. ACS Nano 2018, 12, 12638–12645. [Google Scholar] [CrossRef]
- Gong, S.; Jiang, L.; Cheng, Q. Robust bioinspired graphene-based nanocomposites via synergistic toughening of zinc ions and covalent bonding. J. Mater. Chem. A 2016, 4, 17073–17079. [Google Scholar] [CrossRef]
- Ni, H.; Xu, F.; Tomsia, A.P.; Saiz, E.; Jiang, L.; Cheng, Q. Robust bioinspired graphene film via π–π cross-linking. ACS Appl. Mater. Interfaces 2017, 9, 24987–24992. [Google Scholar] [CrossRef]
- Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh Thermal Conductive yet Superflexible Graphene Films. Adv. Mater. 2017, 29, 1700589. [Google Scholar] [CrossRef]
- Wan, S.; Chen, Y.; Wang, Y.; Li, G.; Wang, G.; Liu, L.; Zhang, J.; Liu, Y.; Xu, Z.; Tomsia, A.P.; et al. Ultrastrong Graphene Films via Long-Chain π-Bridging. Matter 2019, 1, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Yang, M.; Liu, Y.; Qin, H.; Liu, J.; Xu, Z.; Liu, Y.; Meng, F.; Lin, J.; Wang, F.; et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 2020, 11, 2645. [Google Scholar] [CrossRef]
- Lin, J.; Li, P.; Liu, Y.; Wang, Z.; Wang, Y.; Ming, X.; Gao, C.; Xu, Z. The Origin of the Sheet Size Predicament in Graphene Macroscopic Papers. ACS Nano 2021, 15, 4824–4832. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Chen, Y.; Fang, S.; Wang, S.; Xu, Z.; Jiang, L.; Baughman, R.H.; Cheng, Q. High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 2021, 20, 624–631. [Google Scholar] [CrossRef]
- Li, D.; Muller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, K.-S.; Bozoklu, G.; Cai, W.; Nguyen, S.T.; Ruoff, R.S. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2008, 2, 572–578. [Google Scholar] [CrossRef]
- An, Z.; Compton, O.C.; Putz, K.W.; Brinson, L.C.; Nguyen, S.T. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 2011, 23, 3842–3846. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Cao, Y.; Wang, Y.; Yang, W.; Feng, J.J.A. Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv. Mater. 2013, 25, 2980–2983. [Google Scholar] [CrossRef]
- Park, S.; Dikin, D.A.; Nguyen, S.T.; Ruoff, R.S. Graphene oxide sheets chemically cross-linked by polyallylamine. ACS Nano 2009, 113, 15801–15804. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, Y.; Liu, L.; Liu, X.; Tan, P.; Xu, Z.; Kuang, J.; Liu, Q.; Lou, J.; Zhang, Z. Hierarchical Graphene-Based Films with Dynamic Self-Stiffening for Biomimetic Artificial Muscle. Adv. Funct. Mater. 2016, 26, 7003–7010. [Google Scholar] [CrossRef]
- Chen, P.Y.; Sodhi, J.; Qiu, Y.; Valentin, T.M.; Steinberg, R.S.; Wang, Z.; Hurt, R.H.; Wong, I.Y. Multi-scale Graphene Topographies Programmed by Sequential Mechanical Deformation. Adv. Mater. 2016, 28, 3564–3571. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, J.; Zhang, M.; Hong, J.D.; Shi, G. Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv. Electron. Mater. 2016, 2, 1600022. [Google Scholar] [CrossRef]
- Zang, J.; Ryu, S.; Pugno, N.; Wang, Q.; Tu, Q.; Buehler, M.J.; Zhao, X. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013, 12, 321–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, P.; Wang, M.C.; Knapp, P.M.; Nam, S. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 2016, 28, 4639–4645. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Song, S.; Xue, D.; Zhang, H. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 2012, 24, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Shin, D.; Bae, S.; Hong, B.H. Graphene transfer: Key for applications. Nanoscale 2012, 4, 5527–5537. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.; Xu, M.; Jiang, B.; Wen, G.; Zhao, L.; Wang, B.; Yu, A.; Bai, Z.; Sun, Y.; Zhang, L.; et al. Bioinspired Graphene Oxide Membranes with Dual Transport Mechanisms for Precise Molecular Separation. Adv. Funct. Mater. 2019, 29, 1905229. [Google Scholar] [CrossRef]
- Kang, Y.; Qiu, R.; Jian, M.; Wang, P.; Xia, Y.; Motevalli, B.; Zhao, W.; Tian, Z.; Liu, J.Z.; Wang, H.; et al. The Role of Nanowrinkles in Mass Transport across Graphene-Based Membranes. Adv. Funct. Mater. 2020, 30, 2003159. [Google Scholar] [CrossRef]
- Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330. [Google Scholar] [CrossRef]
- Zu, S.-Z.; Han, B.-H. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: Formation of supramolecular hydrogel. J. Phys. Chem. C 2009, 113, 13651–13657. [Google Scholar] [CrossRef]
- Worsley, M.A.; Olson, T.Y.; Lee, J.R.; Willey, T.M.; Nielsen, M.H.; Roberts, S.K.; Pauzauskie, P.J.; Biener, J.; Satcher, J.H., Jr.; Baumann, T.F. High surface area, sp2-cross-linked three-dimensional graphene monoliths. J. Phys. Chem. Lett. 2011, 2, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Liu, J.Z.; Chang, S.L.; Wu, Y.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Jiang, Y.; Xu, Z.; Xiao, Y.; Fang, B.; Liu, Y.; Gao, W.; Zhao, P.; Wang, H.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, N.; Cui, Y.; Gao, W.; Zhao, Q.; Gao, C.; Bai, H.; Xie, T. Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano 2017, 11, 6817–6824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, L.; Huang, B.; He, Z.; Wang, Y.; Tian, Z.; Liu, J.Z.; Wang, K.; Song, J.; Gengenbach, T.R.; Li, D. Extremely Low Density and Super-Compressible Graphene Cellular Materials. Adv. Mater. 2017, 29, 1701553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274. [Google Scholar] [CrossRef]
- Wang, X.; Zhi, L.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.-s.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Chhowalla, M. Graphene-based composite thin films for electronics. Nano Lett. 2009, 9, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Maity, N.; Mandal, A.; Nandi, A.K. Synergistic interfacial effect of polymer stabilized graphene via non-covalent functionalization in poly (vinylidene fluoride) matrix yielding superior mechanical and electronic properties. Polymer 2016, 88, 79–93. [Google Scholar] [CrossRef]
- Domun, N.; Hadavinia, H.; Zhang, T.; Liaghat, G.; Vahid, S.; Spacie, C.; Paton, K.R.; Sainsbury, T. Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content. Nanocomposites 2017, 3, 85–96. [Google Scholar] [CrossRef]
- Liu, C.; Dong, Y.; Lin, Y.; Yan, H.; Zhang, W.; Bao, Y.; Ma, J. Enhanced mechanical and tribological properties of graphene/bismaleimide composites by using reduced graphene oxide with non-covalent functionalization. Compos. Part. B Eng. 2019, 165, 491–499. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, P.; Fan, H.; Sun, Z.; Wen, J. Covalently functionalized graphene towards molecular-level dispersed waterborne polyurethane nanocomposite with balanced comprehensive performance. Appl. Surf. Sci. 2019, 471, 595–606. [Google Scholar] [CrossRef]
- Li, L.; Zhou, B.; Han, G.; Feng, Y.; He, C.; Su, F.; Ma, J.; Liu, C. Understanding the effect of interfacial engineering on interfacial thermal resistance in nacre-like cellulose nanofiber/graphene film. Compos. Sci. Technol. 2020, 197, 108229. [Google Scholar] [CrossRef]
- Kim, J.; Han, N.M.; Kim, J.; Lee, J.; Kim, J.K.; Jeon, S. Highly Conductive and Fracture-Resistant Epoxy Composite Based on Non-oxidized Graphene Flake Aerogel. ACS Appl. Mater. Interfaces 2018, 10, 37507–37516. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, Q.; Wang, R.; Jiang, L.; Cheng, Q. Synergistically toughening nacre-like graphene nanocomposites via gel-film transformation. J. Mater. Chem. A 2017, 5, 16386–16392. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules 2010, 43, 2357–2363. [Google Scholar] [CrossRef]
- Affdl, J.C.H.; Kardos, J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976, 16, 344–352. [Google Scholar] [CrossRef]
- Zhang, X.; Tao, L.; Sreekumar, T.V.; Kumar, S.; Smalley, R.E. Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 2003, 3, 1285–1288. [Google Scholar] [CrossRef]
- Das, S.; Irin, F.; Ahmed, H.T.; Cortinas, A.B.; Wajid, A.S.; Parviz, D.; Jankowski, A.F.; Kato, M.; Green, M.J. Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites. Polymer 2012, 53, 2485–2494. [Google Scholar] [CrossRef]
- Wang, Z.; Xiang, C.; Yao, X.; Le Floch, P.; Mendez, J.; Suo, Z. Stretchable materials of high toughness and low hysteresis. Proc. Natl. Acad. Sci. USA 2019, 116, 5967–5972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Song, L.; Yu, B.; Yang, W.; Wang, B.; Hu, Y.; Yuen, R.K. One-pot surface functionalization and reduction of graphene oxide with long-chain molecules: Preparation and its enhancement on the thermal and mechanical properties of polyurea. Chem. Eng. J. 2014, 236, 233–241. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Tang, L.-C.; Gong, L.-X.; Yan, D.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 2014, 69, 467–480. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 2014, 97, 90–99. [Google Scholar] [CrossRef]
- He, H.; Gao, C. General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem. Mater. 2010, 22, 5054–5064. [Google Scholar] [CrossRef]
- Jia, J.; Sun, X.; Lin, X.; Shen, X.; Mai, Y.W.; Kim, J.K. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 2014, 8, 5774–5783. [Google Scholar] [CrossRef]
- Li, Y.Q.; Yu, T.; Yang, T.Y.; Zheng, L.X.; Liao, K. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. 2012, 24, 3426–3431. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Liu, J.; Fang, B.; Xu, Z.; Li, Z.; Liu, Y.; Brassart, L.; Guo, F.; Gao, W.; Gao, C. Reversible fusion and fission of graphene oxide-based fibers. Science 2021, 372, 614–617. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Meunier, V. Electronic flexoelectricity in low-dimensional systems. Phys. Rev. B 2008, 77, 033403. [Google Scholar] [CrossRef] [Green Version]
- Zubko, P.; Catalan, G.; Tagantsev, A.K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 2013, 43, 387–421. [Google Scholar] [CrossRef] [Green Version]
- Levy, N.; Burke, S.; Meaker, K.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A.C.; Crommie, M.F. Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010, 329, 544–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, P.; Chen, W.; Qiao, J.; Zhang, M.; Zheng, X.; Xue, Z.; Liang, R.; Tian, C.; He, L.; Di, Z. Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields. Nat. Commun. 2019, 10, 3127. [Google Scholar] [CrossRef] [Green Version]
Method | Potential | Young’s Modulus (TPa) | Armchair Ultimate Tensile Stress (GPa) | Zigzag Ultimate Tensile Stress (GPa) | Ref. |
---|---|---|---|---|---|
DFT | - | 1.050 | 110 | 121 | [57] |
MD | AIREBO | 1.01 ± 0.03 | 102 | 129 | [58] |
MD | AIREBO | - | 100 | 126 | [59] |
MD | Tersoff | 1.106 | 124 | 130 | [60] 3 |
MD | ReaxFF | 0.751 | 125 | 138 | [61] |
MM 1 | Morse | - | 102.15 | 82.22 | [62] 3 |
HM 2 | - | 1.030 | ~118 | ~104 | [63] |
Material Type | Graphene Type | Method | Modulus (GPa) | Strength (MPa) | Strain to Failure (%) | Toughness (MJ m−3) | Year | Ref. |
---|---|---|---|---|---|---|---|---|
GFs | GO | Wet-spinning | 135 | 820 | - | - | 2015 | [135] |
GFs | rGO | Wet-spinning | 400 | 2200 | ~0.6 | - | 2016 | [133] |
GFs | rGO-ca2+ | Wet-spinning | - | 842.6 | 3.5 | 18.5 | 2016 | [136] |
GFs | rGO | Dry-spinning | 11.6 | 375 | 9.4 | 19.12 | 2017 | [129] |
GFs | rGO-ca2+ | Wet-spinning | - | 743.6 | 26.3 | 2018 | [138] | |
GB 1 | rGO | Wet-spinning | 309 | 1900 | - | - | 2019 | [134] |
GFs | GO | Twisting film | - | 130 | 29 | - | 2019 | [131] |
GFs | rGO | Plasticization Spinning | 341.7 | 3400 | - | - | 2020 | [37] |
GPs | rGO-Zn2+ | Assembling | 11.2 | 439.1 | 5.3 | 7.6 | 2016 | [139] |
GPs | rGO-AP-DSS | Vacuum filtration | - | 538.8 | 6.6 | 16.1 | 2017 | [140] |
GPs | GO | Sheet collapsing | 0.1 | 23.8 | 22.7 | - | 2017 | [125] |
GPs | dfGO | Thermal annealing | - | - | 16 | - | 2017 | [141] |
GPs | π-bridged rGO | Vacuum filtration | 23.3 | 1054 | 6.4 | 35.8 | 2019 | [142] |
GPs | rGO | Plasticization stretching | 62.8 | 1100 | - | - | 2020 | [143] |
GPs | rGO | Plasticization stretching | ~27 | 760 | - | - | 2021 | [144] |
GPs | rGO | Freeze stretching | 65.5 | 1547 | 3.7 | 35.9 | 2021 | [145] |
Graphene Structure | Matrix | Filer | Method | Graphene Content | Increment 1 of Modulus | Increment of Strength | Increment of Break Elongation | Increment of Toughness | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Dispersed | PU | PI-GO | Solution mixing | 0.1 wt% | 47.5% | 83.7% | 25% | 206.5% | 2015 | [43] |
Dispersed | PVDF | PT-g-PMMA-rGO | Solution mixing | 0.42 wt% | 333% | 283% | 106% | - | 2016 | [173] |
Dispersed | Epoxy | functionalized graphene | Solution mixing | 0.75 wt% | 3.6% | 4.9% | 23.7% | 36.3% | 2017 | [174] |
Dispersed | BMI | PTZ-rGO | Solution mixing | 0.4 wt% | - | 26.5% | - | - | 2019 | [175] |
Dispersed | WPU | Hydroxyl-GO | In situ polymerization | 2 wt% | - | 139% | 15.8% | - | 2019 | [176] |
Dispersed | CNF | PDA-graphene | Vacuum filtration | ~10 wt% | - | 25.4% | 49.8% | - | 2020 | [177] |
Network | Epoxy | Graphene | Freeze casting | 0.34 vol% | 25.4% | 10.2% | - | - | 2018 | [178] |
Network | Epoxy | rGO | Freeze casting | 1.24 wt% | - | -14% | - | 320% 2 | 2019 | [44] |
Network | Epoxy | rGO | Freeze casting | 0.73 wt% | - | -18% | - | 261% 2 | 2020 | [45] |
Continuous | PVA | GO | Blade coating | 0.3 wt% | 42.3% | 32.2% | 64.2% | 101.4% | 2018 | [46] |
Nacre-like | rGO | CMC | Gel-film transformation | ~90 wt% | - | 299.7% | - | 633.3% | 2017 | [179] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Qin, H.; Liu, Y. Multi-Scale Structure–Mechanical Property Relations of Graphene-Based Layer Materials. Materials 2021, 14, 4757. https://doi.org/10.3390/ma14164757
Liu J, Qin H, Liu Y. Multi-Scale Structure–Mechanical Property Relations of Graphene-Based Layer Materials. Materials. 2021; 14(16):4757. https://doi.org/10.3390/ma14164757
Chicago/Turabian StyleLiu, Jingran, Huasong Qin, and Yilun Liu. 2021. "Multi-Scale Structure–Mechanical Property Relations of Graphene-Based Layer Materials" Materials 14, no. 16: 4757. https://doi.org/10.3390/ma14164757
APA StyleLiu, J., Qin, H., & Liu, Y. (2021). Multi-Scale Structure–Mechanical Property Relations of Graphene-Based Layer Materials. Materials, 14(16), 4757. https://doi.org/10.3390/ma14164757