Obtention and Characterization of Ferrous Chloride FeCl2·4H2O from Water Pickling Liquors
Abstract
:1. Introduction
2. Experimental
2.1. Obtention of the Iron Chloride from Water Pickling Liquors
2.2. Characterization of the Iron Chloride Obtained from Water Pickling Liquors
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. Scanning Electron Microscopy (SEM)
3.3. µ-Raman Spectroscopy and µ-Photoluminescence
3.4. Mössbauer Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, J.; Pei, Y.; Hu, Q.; Pei, D.; Xu, J. The recycling of ferric salt in steel pickling liquors: Preparation of nano-sized iron oxide. Procedia Environ. Sci. 2016, 31, 778–784. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Du, Z.; Ma, S.; Cheng, F.; Li, P. High-efficiency leaching of valuable metals from saprolite laterite ore using pickling waste liquor for synthesis of spinel-type ferrites MFe2O4 with excellent magnetic properties. J. Mater. Res. Technol. 2021, 10, 988–1001. [Google Scholar] [CrossRef]
- Negro, C.; Blanco, P.; Dufour, J.; Latorre, R.; Formoso, A.; López, F. The treatment of hydrochloric acid waste pickle liquors. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1993, 28, 1651–1667. [Google Scholar] [CrossRef]
- Schmidt, B.; Wolters, R.; Kaplin, J.; Schneiker, T.; de los Angeles Lobo-Recio, M.; López, F.; López-Delgado, A.; Alguacil, F.J. Rinse water regeneration in stainless steel pickling. Desalination 2007, 211, 64–71. [Google Scholar] [CrossRef]
- Hoak, R.D.; Lewis, C.J.; Hodge, W.W. Treatment of spent pickling liquors with limestone and lime. Ind. Eng. Chem. 1945, 37, 553–559. [Google Scholar] [CrossRef]
- Rituper, R. High-performance effluent-free pickling plants with fluid bed hydrochloric acid regeneration. Iron Steel Eng. 1995, 72, 50–54. [Google Scholar]
- Marañón, E.; Suárez, F.; Alonso, F.; Fernández, Y.; Sastre, H. Preliminary study of iron removal from hydrochloric pickling liquor by Ion exchange. Ind. Eng. Chem. Res. 1999, 38, 2782–2786. [Google Scholar] [CrossRef]
- López-Delgado, A.; Alguacil, F.J.; López, F.A. Recovery of iron from bio-oxidized sulphuric pickling waste water by precipitation as basic sulphates. Hydrometallurgy 1997, 45, 97–112. [Google Scholar] [CrossRef]
- Tomaszewska, M. Recovery of hydrochloric acid from metal pickling solutions by membrane distillation. Sep. Purif. Technol. 2001, 22–23, 591–600. [Google Scholar] [CrossRef]
- Yi, Y.; Tu, G.; Zhao, D.; Tsang, P.E.; Fang, Z. Pyrolysis of different biomass pre-impregnated with steel pickling waste liquor to prepare magnetic biochars and their use for the degradation of metronidazole. Bioresour. Technol. 2019, 289, 121613. [Google Scholar] [CrossRef]
- Yang, S.; Li, W.; Zhang, H.; Wen, Y.; Ni, Y. Treatment of paper mill wastewater using a composite inorganic coagulant prepared from steel mill waste pickling liquor. Sep. Purif. Technol. 2019, 209, 238–245. [Google Scholar] [CrossRef]
- Ciminelli, V.S.T.; Dias, A.; Braga, H.C. Simultaneous production of impurity-free water and magnetite from steel pickling liquors by microwave-hydrothermal processing. Hydrometallurgy 2006, 84, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Hou, J.; Yao, L.; Jin, H.; Qian, G.-R.; Xu, Z.P. Ferrite materials prepared from two industrial wastes: Electroplating sludge and spent pickle liquor. Sep. Purif. Technol. 2010, 75, 210–217. [Google Scholar] [CrossRef]
- Özdemir, T.; Öztin, C.; Kıncal, N.S. Treatment of waste pickling liquors: Process synthesis and economicanalysis. Chem. Eng. Commun. 2006, 193, 548–563. [Google Scholar] [CrossRef]
- Zając, M.; Lipiński, I.E.; Rudowicz, C. Magnetostructural correlations for Fe2+ ions at orthorhombic sites in FeCl2·4H2O and FeF2·4H2O crystals modeled by microscopic spin Hamiltonian approach. J. Magn. Magn. Mater. 2016, 401, 1068–1077. [Google Scholar] [CrossRef]
- Brisebois, P.P.; Izquierdo, R.; Siaj, M. Room-Temperature reduction of graphene oxide in water by metal chloride hydrates: A cleaner approach for the preparation of graphene@metal hybrids. Nanomaterials 2020, 10, 1255. [Google Scholar] [CrossRef]
- Khandanlou, R.; Ahmad, M.; Shameli, K.; Kalantari, K. Synthesis and characterization of rice straw/Fe3O4 nanocomposites by a quick precipitation method. Molecules 2013, 18, 6597–6607. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; An, D.; Song, J.; Gao, W.; Shen, Y. Persulfate/electrochemical/FeCl2 system for the degradation of phenol adsorbed on granular activated carbon and adsorbent regeneration. J. Clean. Prod. 2017, 165, 637–644. [Google Scholar] [CrossRef]
- Kakar, S.; Batra, D.; Singh, R. Preparation and evaluation of magnetic microspheres of mesalamine (5-aminosalicylic acid) for colon drug delivery. J. Acute Dis. 2013, 2, 226–231. [Google Scholar] [CrossRef]
- Shaghaghi, B.; Khoee, S.; Bonakdar, S. Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system. Int. J. Pharm. 2019, 559, 1–12. [Google Scholar] [CrossRef]
- Ahmad, T.; Ahmad, K.; Alam, M. Characterization of water treatment plant’s sludge and its safe disposal options. Procedia Environ. Sci. 2016, 35, 950–955. [Google Scholar] [CrossRef]
- Kang, S.; Sun, Y.; Deng, S.; Li, S.; Su, Y.; Guo, W.; Li, J. Extraction of Huadian oil shale in subcritical FeCl2 solution. Fuel Process. Technol. 2021, 211, 106571. [Google Scholar] [CrossRef]
- Tang, B.; Su, W.; Wang, J.; Fu, F.; Yu, G.; Zhang, J. Minimizing the creation of spent pickling liquors in a pickling process with high-concentration hydrochloric acid solutions: Mechanism and evaluation method. J. Environ. Manag. 2012, 98, 147–154. [Google Scholar] [CrossRef]
- Condorchem Envitech, S.L. Life Dime HCl & Zn Recovery. 2017. Available online: https://lifedime.eu/es/ (accessed on 15 July 2021).
- Roisnel, T.; Rodriguez-Carvajal, J. WinPLOTR, a Graphic Tool for Powder Diffraction. Available online: http://www-llb.cea.fr/fullweb/winplotr/winplotr.htm (accessed on 15 July 2021).
- Verbist, J.J.; Hamilton, W.C.; Koetzle, T.F.; Lehmann, M.S. Neutron diffraction study of iron(II) chloride tetrahydrate, FeCl2·4H2O. J. Chem. Phys. 1972, 56, 3257–3264. [Google Scholar] [CrossRef]
- Guchhait, S.K.; Sammi, H.; Yadav, K.K.; Rana, S.; Jha, M. New hydrometallurgical approach to obtain uniform antiferromagnetic ferrous chloride cubes from waste tin cans. J. Mater. Sci. Mater. Electron. 2021, 32, 2965–2972. [Google Scholar] [CrossRef]
- Cariati, F.; Masserano, F.; Martini, M.; Spinolo, G. Raman studies of NiX2·6H2O and FeCl2·4H2O. J. Raman Spectrosc. 1989, 20, 773–777. [Google Scholar] [CrossRef]
- Caswell, N.; Solin, S.A. Vibrational excitations of pure FeCl3 and graphite intercalated with ferric chloride. Solid State Commun. 1978, 27, 961–967. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Nieuwoudt, M.K.; Comins, J.D.; Cukrowski, I. The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman micro-spectroscopy and electrochemical polarisation. Part I: Near-resonance enhancement of the Raman spectra of iron oxide and oxyhydroxide compounds. J. Raman Spectrosc. 2011, 42, 1335–1339. [Google Scholar] [CrossRef]
- Richmond, W.R.; Cowley, J.M.; Parkinson, G.M.; Saunders, M. An electron microscopy study of β-FeOOH (akaganéite) nanorods and nanotubes. CrystEngComm 2006, 8, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Criado, M.; Martínez-Ramirez, S.; Bastidas, J.M. A Raman spectroscopy study of steel corrosion products in activated fly ash mortar containing chlorides. Constr. Build. Mater. 2015, 96, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Gilberg, M.R.; Seeley, N.J. The identity of compounds containing chloride ions in marine iron corrosion products: A critical review. Stud. Conserv. 1981, 26, 50–56. [Google Scholar] [CrossRef]
- Neff, D.; Bellot-Gurlet, L.; Dillmann, P. Deterioration of iron archaeological artefacts: Micro-Raman investigation on Cl-containing corrosion products. J. Raman Spectrosc. Int. J. Orig. Work Asp. Raman Spectrosc. Incl. High. Order Process. Brillouin Rayleigh Scatt. 2007, 38, 389–397. [Google Scholar] [CrossRef]
- Bull, J.N.; Maclagan, R.G.A.R.; Fitchett, C.M.; Tennant, W.C. A new isomorph of ferrous chloride tetrahydrate: A 57Fe Mössbauer and X-ray crystallography study. J. Phys. Chem. Solids 2010, 71, 1746–1753. [Google Scholar] [CrossRef]
- Murad, E. Magnetic properties of microcrystalline iron (III) oxides and related materials as reflected in their Mössbauer spectra. Phys. Chem. Miner. 1996, 23, 248–262. [Google Scholar] [CrossRef]
Sample | Name | Description |
---|---|---|
Commercial ferrous chloride | CFC | FeCl2·4H2O crystals purchased from Merck ≥99.0% |
Fresh ferrous chloride | FFC | Crystals obtained from water pickling liquors |
Aged ferrous chloride | AFC | Crystals aged for 10 to 20 days |
Aged ferrous chloride | AAFC | Crystals aged for 2 months |
Sample | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | Rwp | RF | RB | |
---|---|---|---|---|---|---|---|---|---|---|
[26] | 5.885(3) | 7.174(3) | 8.505(4) | 90 | 111.11(5) | 90 | -- | -- | -- | -- |
FFC | 5.891(4) | 7.117(4) | 8.510(1) | 90 | 111.10(2) | 90 | 17.1 | 18.3 | 5.58 | 4.18 |
AFC | 5.902(8) | 7.121(6) | 8.486(3) | 90 | 112.02(8) | 90 | 16.6 | 19.4 | 6.10 | 3.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcaraz, L.; Sotillo, B.; Marco, J.F.; Alguacil, F.J.; Fernández, P.; López, F.A. Obtention and Characterization of Ferrous Chloride FeCl2·4H2O from Water Pickling Liquors. Materials 2021, 14, 4840. https://doi.org/10.3390/ma14174840
Alcaraz L, Sotillo B, Marco JF, Alguacil FJ, Fernández P, López FA. Obtention and Characterization of Ferrous Chloride FeCl2·4H2O from Water Pickling Liquors. Materials. 2021; 14(17):4840. https://doi.org/10.3390/ma14174840
Chicago/Turabian StyleAlcaraz, Lorena, Belén Sotillo, José F. Marco, Francisco J. Alguacil, Paloma Fernández, and Félix A. López. 2021. "Obtention and Characterization of Ferrous Chloride FeCl2·4H2O from Water Pickling Liquors" Materials 14, no. 17: 4840. https://doi.org/10.3390/ma14174840
APA StyleAlcaraz, L., Sotillo, B., Marco, J. F., Alguacil, F. J., Fernández, P., & López, F. A. (2021). Obtention and Characterization of Ferrous Chloride FeCl2·4H2O from Water Pickling Liquors. Materials, 14(17), 4840. https://doi.org/10.3390/ma14174840