Dynamic Behaviors of Mortar Reinforced with NiTi SMA Fibers under Impact Compressive Loading
Abstract
:1. Introduction
2. Experimental Test
2.1. Specimens
2.2. SHPB Test
2.3. Data Analysis
3. Results and Discussion
3.1. Failure Mode
3.2. Dynamic Compressive stress-strain Curve
3.3. Dynamic Compressive Strength
3.4. Peak Strain
3.5. Energy Absorption Property
3.6. Elastic Modulus
4. Discussion of Results
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grote, D.; Park, S.; Zhou, M. Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization. Int. J. Impact Eng. 2001, 25, 869–886. [Google Scholar] [CrossRef]
- Ross, C.A.; Tedesco, J.W. Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. Mater. J. 1989, 86, 475–481. [Google Scholar]
- Reinhardt, H.W. Testing and monitoring techniques for impact and impulsive loading of concrete structures. In Proceedings of the RILEM Symposium on Impact and Impulsive Loading of Concrete Structures, Berlin, Germany, 2–4 June 1982; Volume 1, pp. 65–88. [Google Scholar]
- Xu, Z.; Hao, H.; Li, H. Experimental study of dynamic compressive properties of fibre reinforced concrete material with different fibres. Mater. Des. 2012, 33, 42–55. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L. Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Constr. Build. Mater. 2013, 38, 1146–1151. [Google Scholar] [CrossRef]
- Yang, F.; Ma, H.; Jing, L.; Zhao, L.; Wang, Z. Dynamic compressive and splitting tensile tests on mortar using split Hopkinson pressure bar technique. Lat. Am. J. Solids Struct. 2015, 12, 730–746. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, H.; Li, Q.; Huang, F. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: Experiments. Int. J. Impact Eng. 2009, 36, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, M.-H.; Quek, S.T. Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading. Constr. Build. Mater. 2012, 31, 1–11. [Google Scholar] [CrossRef]
- Li, W.; Xu, J. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater. Sci. Eng. A 2009, 513-514, 145–153. [Google Scholar] [CrossRef]
- Code, C.F.M. Buletin D’Information No. 213/214.(1993); Comité Euro-International du Béton-Fédération Internationale De La Précontrainte (CEBFIP): Lausanne, Switzerland, 1990. [Google Scholar]
- Li, Q.; Meng, H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int. J. Solids Struct. 2003, 40, 343–360. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.-M.; Park, J.; Cho, J.-Y. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test. Int. J. Impact Eng. 2018, 113, 191–202. [Google Scholar] [CrossRef]
- ACI Committee 349. Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349-13) & Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
- ACI Committee 370. Report for the Design of Concrete Structures for Blast Effects; American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
- Unified Facilities Criteria (UFC) 3-340-02. Structures to Resist the Effects of Acci- Dental Explosions; Department of Defense: Washington, DC, USA, 2008. [Google Scholar]
- Wang, Z.; Shi, Z.; Wang, J. On the strength and toughness properties of SFRC under static-dynamic compression. Compos. Part. B: Eng. 2011, 42, 1285–1290. [Google Scholar] [CrossRef]
- Ren, G.; Wu, H.; Fang, Q.; Liu, J. Effects of steel fiber content and type on dynamic compressive mechanical properties of UHPCC. Constr. Build. Mater. 2018, 164, 29–43. [Google Scholar] [CrossRef]
- Jiao, C.J.; Sun, W.; Gao, P.Z. Dynamic mechanical properties of steel-fiber reinforced ultra high strength concrete. Eng. Mech. 2006, 23, 86–89. [Google Scholar]
- Lee, K.-J.; Lee, J.-H.; Jung, C.-Y.; Choi, E. Crack-closing performance of NiTi and NiTiNb fibers in cement mortar beams using shape memory effects. Compos. Struct. 2018, 202, 710–718. [Google Scholar] [CrossRef]
- Choi, E.; Kim, D.J.; Youn, H.; Nam, T.-H. Repairing cracks developed in mortar beams reinforced by cold-drawn NiTi or NiTiNb SMA fibers. Smart Mater. Struct. 2015, 24, 125010. [Google Scholar] [CrossRef]
- Choi, E.; Mohammadzadeh, B.; Hwang, J.-H.; Kim, W.J. Pullout behavior of superelastic SMA fibers with various end-shapes embedded in cement mortar. Constr. Build. Mater. 2018, 167, 605–616. [Google Scholar] [CrossRef]
- Choi, E.; Ho, H.V.; Jeon, J.-S. Active Reinforcing Fiber of Cementitious Materials Using Crimped NiTi SMA Fiber for Crack-Bridging and Pullout Resistance. Materials 2020, 13, 3845. [Google Scholar] [CrossRef]
- Choi, E.; Ostadrahimi, A.; Lee, J.-H. Pullout resistance of crimped reinforcing fibers using cold-drawn NiTi SMA wires. Constr. Build. Mater. 2020, 265, 120858. [Google Scholar] [CrossRef]
- Choi, E.; Kim, W.J.; Kim, T. Uniaxial compressive cyclic behavior of mortar reinforced with crimped or dog-bone-shaped SMA fibers. Compos. Struct. 2021, 262, 113600. [Google Scholar] [CrossRef]
- Ho, H.; Choi, E.; Kim, D.; Kang, J. Straining Behavior of Mortar Reinforced by Cold Drawn Crimped and Dog-Bone-Shaped Fibers under Monotonic and Cyclic Compressions. Materials 2021, 14, 1522. [Google Scholar] [CrossRef]
- Ho, H.V.; Choi, E.; Park, S.J. Investigating stress distribution of crimped SMA fibers during pullout behavior using experimental testing and a finite element model. Compos. Struct. 2021, 272, 114254. [Google Scholar] [CrossRef]
- Kim, K.-M.; Lee, S.; Cho, J.-Y. Effect of maximum coarse aggregate size on dynamic compressive strength of high-strength concrete. Int. J. Impact Eng. 2019, 125, 107–116. [Google Scholar] [CrossRef]
- ASTM C192/C192M-16a. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Flores-Johnson, E.A.; Li, Q. Structural effects on compressive strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int. J. Impact Eng. 2017, 109, 408–418. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, A.; Aslani, F. The synergistic effects of shape memory alloy, steel, and carbon fibres with polyvinyl alcohol fibres in hybrid strain-hardening cementitious composites. Constr. Build. Mater. 2020, 252, 119061. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.-H.; Quek, S.T. Effect of high strain rate loading on compressive behaviour of fibre-reinforced high-strength concrete. Mag. Concr. Res. 2011, 63, 813–827. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wang, D. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements. Cem. Concr. Compos. 2017, 79, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-L.; Liu, Y.-S.; Shen, R. stress-strain relationship of steel fiber-reinforced concrete under dynamic compression. Constr. Build. Mater. 2008, 22, 811–819. [Google Scholar] [CrossRef]
- ACI Committee 446. Report on Dynamic Fracture of Concrete; Report 446. 4R-04; American Concrete Institute: Farmington Hills, MI, USA, 2004. [Google Scholar]
- Zheng, Z.; Feldman, D. Synthetic fibre-reinforced concrete. Prog. Polym. Sci. 1995, 20, 185–210. [Google Scholar] [CrossRef]
- Ma, Q.; Guo, R.; Zhao, Z.; Lin, Z.; He, K. Mechanical properties of concrete at high temperature—A review. Constr. Build. Mater. 2015, 93, 371–383. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Jin, L.; Du, X.; Wu, J.; Duan, W.H. Experimental study on dynamic compressive behavior of steel fiber reinforced concrete at elevated temperatures. Constr. Build. Mater. 2019, 210, 673–684. [Google Scholar] [CrossRef]
- Baloevic, G.; Radnic, J.; Matesan, D.; Grgic, N. Behavior of fiber reinforced mortar composites under impact load. Lat. Am. J. Solids Struct. 2018, 15. [Google Scholar] [CrossRef] [Green Version]
Cement (Type I) | Fly Ash | Silica Sand | Water-Reducing Admixture | Water |
---|---|---|---|---|
1.00 | 0.15 | 1.00 | 0.009 | 0.35 |
Num. | Specimen | Front Stress (MPa) | Back Stress (MPa) | Average Stress (MPa) | R-Value (%) | Strain Rate (s−1) |
---|---|---|---|---|---|---|
1 | P_V8 | 90.8 | 90.5 | 90.7 | 0.4 | 10 |
2 | CR_V8 | 88.4 | 87.2 | 87.8 | 1.4 | 12 |
3 | DG_V8 | 79.2 | 77.0 | 78.1 | 2.8 | 17 |
4 | P(H)_V8 | 90.0 | 89.5 | 89.7 | 0.5 | 11 |
5 | CR(H)_V8 | 81.5 | 80.1 | 80.8 | 1.7 | 14 |
6 | DG(H)_V8 | 75.5 | 75.0 | 75.3 | 0.8 | 17 |
7 | P_V12 | 124.7 | 124.9 | 124.8 | 0.2 | 49 |
8 | CR_V12 | 110.0 | 109.9 | 110.0 | 0.1 | 50 |
9 | DG_V12 | 92.1 | 86.7 | 89.4 | 5.9 | 67 |
10 | P(H)_V12 | 120.1 | 115.4 | 117.7 | 4.0 | 50 |
11 | CR(H)_V12 | 101.4 | 98.8 | 100.1 | 2.6 | 62 |
12 | DG(H)_V12 | 102.8 | 102.0 | 102.4 | 0.8 | 56 |
Specimens | Dynamic Compressive Strength (MPa) | Peak Strain (×10−3) | Specific Energy Absorption (kJ·m−3) |
---|---|---|---|
P_V8 | 90.7 | 4.7 | 177 |
CR_V8 | 87.8 | 5.7 | 196 |
DG_V8 | 78.1 | 7.7 | 245 |
P(H)_V8 | 89.7 | 5.2 | 192 |
CR(H)_V8 | 80.8 | 6.8 | 234 |
DG(H)_V8 | 75.3 | 7.9 | 288 |
P_V12 | 124.8 | 7.1 | 1110 |
CR_V12 | 110.0 | 8.1 | 1152 |
DG_V12 | 89.4 | 9.7 | 1111 |
P(H)_V12 | 117.7 | 7.6 | 1120 |
CR(H)_V12 | 100.1 | 8.7 | 1154 |
DG(H)_V12 | 102.4 | 8.9 | 1132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, E.; Ho, H.-V.; Seo, J. Dynamic Behaviors of Mortar Reinforced with NiTi SMA Fibers under Impact Compressive Loading. Materials 2021, 14, 4933. https://doi.org/10.3390/ma14174933
Choi E, Ho H-V, Seo J. Dynamic Behaviors of Mortar Reinforced with NiTi SMA Fibers under Impact Compressive Loading. Materials. 2021; 14(17):4933. https://doi.org/10.3390/ma14174933
Chicago/Turabian StyleChoi, Eunsoo, Ha-Vinh Ho, and Junwon Seo. 2021. "Dynamic Behaviors of Mortar Reinforced with NiTi SMA Fibers under Impact Compressive Loading" Materials 14, no. 17: 4933. https://doi.org/10.3390/ma14174933
APA StyleChoi, E., Ho, H. -V., & Seo, J. (2021). Dynamic Behaviors of Mortar Reinforced with NiTi SMA Fibers under Impact Compressive Loading. Materials, 14(17), 4933. https://doi.org/10.3390/ma14174933