Assessment of Microstructure and Release of Fluoride Ions from Selected Fissure Sealants: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staszczyk, M.; Kępisty, M.; Kołodziej, I.; Kościelniak, D.; Gregorczyk-Maga, I.; Ciepły, J.; Jurczak, A. Dental caries status and trend in 5-, 7- and 12-year-old children from the Małopolskie region in comparison to the Polish population. Nowa Stomatol. 2018, 23, 55–65. [Google Scholar] [CrossRef]
- Kaczmarek, U. Fluoride Release from Dental Restorative Materials and Secondary Caries. Dent. Med. Probl. 2005, 42, 333–340. [Google Scholar]
- Weyant, R.J.; Tracy, S.L.; Anselmo, T.T.; Beltrán-Aguilar, E.D.; Donly, K.J.; Frese, W.A.; Hujoel, P.P.; Iafolla, T.; Kohn, W.; Kumar, J.; et al. Topical fluoride for caries prevention. J. Am. Dent. Assoc. 2013, 144, 1279–1291. [Google Scholar] [CrossRef]
- Jablonowski, B.L.; Bartoloni, J.A.; Hensley, D.M.; Vandewalle, K.S. Fluoride release from newly marketed fluoride varnishes. Quintessence Int. 2012, 43, 221–228. [Google Scholar] [PubMed]
- Marinho, V.C.; Worthington, H.V.; Walsh, T.; Clarkson, J.E. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2013, 2013, CD002279. [Google Scholar] [CrossRef]
- Castillo, J.L.; Milgrom, P. Fluoride release from varnishes in two in vitro protocols. J. Am. Dent. Assoc. 2004, 135, 1696–1699. [Google Scholar] [CrossRef] [PubMed]
- Simmer, J.; Hardy, N.; Chinoy, A.; Bartlett, J.; Hu, J.-C. How fluoride protects dental enamel from demineralization. J. Int. Soc. Prev. Community Dent. 2020, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Pastrav, M.; Chisnoiu, A.M.; Pastrav, O.; Sarosi, C.; Pordan, D.; Petean, I.; Muntean, A.; Moldovan, M.; Chisnoiu, R.M. Surface Characteristics, Fluoride Release and Bond Strength Evaluation of Four Orthodontic Adhesives. Materials 2021, 14, 3578. [Google Scholar] [CrossRef]
- Dionysopoulos, D. The effect of fluoride-releasing restorative materials on inhibition of secondary caries formation. Fluoride 2014, 47, 258. [Google Scholar]
- Bianco, A.; Cacciotti, I.; Lombardi, M.; Montanaro, L.; Bemporad, E.; Sebastiani, M. F-substituted hydroxyapatite nanopowders: Thermal stability, sintering behaviour and mechanical properties. Ceram. Int. 2010, 36, 313–322. [Google Scholar] [CrossRef]
- Gerreth, K.; Cieślińska, K. Dental treatment of generally−anaesthesized disabled children. Fam. Med. Prim. Care Rev. 2005, 7, 63–67. [Google Scholar]
- Lucchese, A.; Gherlone, E.; Portelli, M.; Bertossi, D. Tooth Orthodontic Movement after Maxillofacial Surgery. Eur. J. Inflamm. 2012, 10, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Haytac, M.C.; Dogan, M.C.; Antmen, B. The results of a preventive dental program for pediatric patients with hematologic malignancies. Oral Health Prev. Dent. 2004, 2, 59–65. [Google Scholar]
- D’Orto, B.; Tetè, G.; Polizzi, E. Osseointegrated dental implants supporting fixed prostheses in patients affected by Sjögren’s Sindrome: A narrative review. J. Biol. Regul. Homeost. Agents 2020, 34, 91–93. [Google Scholar] [PubMed]
- Fejerskov, O. Changing Paradigms in Concepts on Dental Caries: Consequences for Oral Health Care. Caries Res. 2004, 38, 182–191. [Google Scholar] [CrossRef]
- Sikorska-Jaroszyńska, M.H.J.; Czelej, G.C. Fluoride in Dentistry and Medicine; Wydawnictwo Czelej: Czelej, Lublin, 2000. [Google Scholar]
- Moody, A. Adult anthropometric measures, overweight and obesity. In Health Survey for England 2013; Craig, R., Mindell, J., Eds.; Health and Social Care Information Centre: Leeds, UK, 2014; pp. 1–17. [Google Scholar]
- Olczak-Kowalczyk, D.; Borysewicz-Lewicka, M.; Adamowicz-Klepalska, B.; Jackowska, T.; Kaczmarek, U.; Kaczmarek, U. Consensus statement of Polish experts on individual caries prevention with fluoride in children and adolescents. Nowa Stomatol. 2016, 21, 47–73. [Google Scholar] [CrossRef]
- Olczak-Kowalczyk, D.; Szczepańska, J.; Kaczmarek, U. Modern Dentistry of Developmental Age; Med Press International: Otwock, Poland, 2017; ISBN 978-83-87717-26-1. [Google Scholar]
- Dijkman, G.E.H.M.; Arends, J. Secondary Caries in situ around Fluoride-Releasing Light-Curing Composites: A Quantitative Model Investigation on Four Materials with a Fluoride Content between 0 and 26 vol%. Caries Res. 1992, 26, 351–357. [Google Scholar] [CrossRef]
- Featherstone, J.D.B. Prevention and reversal of dental caries: Role of low level fluoride. Community Dent. Oral Epidemiol. 1999, 27, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Khalili Sadrabad, Z.; Safari, E.; Alavi, M.; Shadkar, M.M.; Hosseini Naghavi, S.H. Effect of a fluoride-releasing fissure sealant and a conventional fissure sealant on inhibition of primary carious lesions with or without exposure to fluoride-containing toothpaste. J. Dent. Res. Dent. Clin. Dent. Prospects 2019, 13, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cagetti, M.G.; Carta, G.; Cocco, F.; Sale, S.; Congiu, G.; Mura, A.; Strohmenger, L.; Lingström, P.; Campus, G.; Bossù, M.; et al. Effect of Fluoridated Sealants on Adjacent Tooth Surfaces. J. Dent. Res. 2014, 93, 59S–65S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meza, G.; Urrejola, D.; Saint Jean, N.; Inostroza, C.; López, V.; Khoury, M.; Brizuela, C. Personalized Cell Therapy for Pulpitis Using Autologous Dental Pulp Stem Cells and Leukocyte Platelet-rich Fibrin: A Case Report. J. Endod. 2019, 45, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Capparè, P.; Tetè, G.; Sberna, M.T.; Panina-Bordignon, P. The Emerging Role of Stem Cells in Regenerative Dentistry. Curr. Gene Ther. 2020, 20, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, W.; Dobrzynski, M.; Rybak, Z.; Szymonowicz, M.; Wiglusz, R.J. Selected Nanomaterials’ Application Enhanced with the Use of Stem Cells in Acceleration of Alveolar Bone Regeneration during Augmentation Process. Nanomaterials 2020, 10, 1216. [Google Scholar] [CrossRef] [PubMed]
- Piesiak-Pańczyszyn, D.; Kaczmarek, U. Fluoride release from fluoride varnish under in vitro and in vivo conditions. Dent. Med. Probl. 2017, 54, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Raszewski, Z.; Nowakowska, D.; Wieckiewicz, W.; Nowakowska-Toporowska, A. Release and Recharge of Fluoride Ions from Acrylic Resin Modified with Bioactive Glass. Polymers 2021, 13, 1054. [Google Scholar] [CrossRef]
- Chhatwani, S.; Hoppe, J.; Naumova, E.A.; Arnold, W.H.; Möhlhenrich, S.C.; Bizhang, M.; Danesh, G. Fluoride Ion Release Characteristics of Fluoride-Containing Varnishes—An In Vitro Study. Appl. Sci. 2021, 11, 1452. [Google Scholar] [CrossRef]
- Williams, J.A.; Billington, R.W.; Pearson, G.J. The influence of sample dimensions on fluoride ion release from a glass ionomer restorative cement. Biomaterials 1999, 20, 1327–1337. [Google Scholar] [CrossRef]
- Milburn, J.L.; Henrichs, L.E. Substantive Fluoride Release from a New Fluoride Varnish Containing CXP. Dentistry 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Svante Twetman, K.S.-L. Fluoride concentration in whole saliva and separate gland secretions after topical treatment with three different fluoride varnishes. Acta Odontol. Scand. 1999, 57, 263–266. [Google Scholar] [CrossRef]
- Ritter, A.V.; de Dias, W.L.; Miguez, P.; Caplan, D.J.; Swift, E.J. Treating cervical dentin hypersensitivity with fluoride varnish. J. Am. Dent. Assoc. 2006, 137, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.D.; Osborne, D.S.; Aguievtseva, S.; Lynch, E. Six month fluoride release from seven new restorative materials. J. Dent. Res. 1996, 75, 1291. [Google Scholar]
- Patil, S.S.; Kontham, U.R.; Kontham, R.K.; Patil, S.S.; Kamble, S.P. Fluoride release and fluoride-recharging ability of three different sealants. J. Indian Soc. Pedod. Prev. Dent. 2020, 38, 247–252. [Google Scholar] [CrossRef]
- Poggio, C.; Andenna, G.; Ceci, M.; Beltrami, R.; Colombo, M.; Cucca, L. Fluoride release and uptake abilities of different fissure sealants. J. Clin. Exp. Dent. 2016, 8, e284. [Google Scholar] [CrossRef] [PubMed]
- Herman, K.; Wujczyk, M.; Dobrzynski, M.; Diakowska, D.; Wiglusz, K.; Wiglusz, R.J. In Vitro Assessment of Long-Term Fluoride Ion Release from Nanofluorapatite. Materials 2021, 14, 3747. [Google Scholar] [CrossRef]
- Wiegand, A.; Buchalla, W.; Attin, T. Review on fluoride-releasing restorative materials—Fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent. Mater. 2007, 23, 343–362. [Google Scholar] [CrossRef] [PubMed]
- Rezk-Lega, F.; Ögaard, B.; Rölla, G. Availability of fluoride from glass-ionomer luting cements in human saliva. Eur. J. Oral Sci. 1991, 99, 60–63. [Google Scholar] [CrossRef] [PubMed]
- El Mallakh, B.F.; Sarkar, N.K. Fluoride release from glass-ionomer cements in de-ionized water and artificial saliva. Dent. Mater. 1990, 6, 118–122. [Google Scholar] [CrossRef]
- Garcia-Godoy, F.; Abarzua, I.; De Goes, M.F.; Chan, D.C. Fluoride release from fissure sealants. J. Clin. Pediatr. Dent. 1997, 22, 45–49. [Google Scholar]
- Khudanov, B.O.; Abdullaev, J.R.; Bottenberg, P.; Schulte, A.G. Evaluation of the Fluoride Releasing and Recharging Abilities of Various Fissure Sealants. Oral Health Prev. Dent. 2018, 16, 96–103. [Google Scholar] [CrossRef]
- Bayrak, S.; Tunc, E.S.; Aksoy, A.; Ertas, E.; Guvenc, D.; Ozer, S. Fluoride release and recharge from different materials used as fissure sealants. Eur. J. Dent. 2010, 4, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Kosior, P.; Dobrzyński, M.; Korczyński, M.; Herman, K.; Czajczyńska-Waszkiewicz, A.; Kowalczyk-Zając, M.; Piesiak-Pańczyszyn, D.; Fita, K.; Janeczek, M. Long-term release of fluoride from fissure sealants—In vitro study. J. Trace Elem. Med. Biol. 2017, 41, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Şişmanoğlu, S.; Şişmanoğlu, S. Fluoride Release of Giomer and Resin Based Fissure Sealants. Odovtos Int. J. Dent. Sci. 2019, 21, 45–52. [Google Scholar] [CrossRef]
- Rock, W.P.; Foulkes, E.E.; Perry, H.; Smith, A.J. A comparative study of fluoride-releasing composite resin and glass ionomer materials used as fissure sealants. J. Dent. 1996, 24, 275–280. [Google Scholar] [CrossRef]
Time | Arkona (ppm/mg) | Helioseal (ppm/mg) | Conseal (ppm/mg) | Helioseal Plus (ppm/mg) |
---|---|---|---|---|
1 h | 0.0004 ± 0.0001 | 0.0009 ± 0.0001 | 0.0051 ± 0.0018 | 0.0017 ± 0.0007 |
3 h | 0.0008 ± 0.0003 | 0.0008 ± 0.0001 | 0.0023 ± 0.0006 | 0.0016 ± 0.0004 |
24 h | 0.0008 ± 0.0001 | 0.0013 ± 0.0003 | 0.0022 ± 0.0003 | 0.0015 ± 0.0004 |
48 h | 0.0009 ± 0.0002 | 0.0009 ± 0.0001 | 0.0025 ± 0.0010 | 0.0014 ± 0.0003 |
72 h | 0.0012 ± 0.0002 | 0.0011 ± 0.0001 | 0.0016 ± 0.0006 | 0.0009 ± 0.0006 |
96 h | 0.0006 ± 0.0001 | 0.0006 ± 0.0001 | 0.0011 ± 0.0006 | 0.0007 ± 0.0002 |
1 week | 0.0008 ± 0.0002 | 0.0008 ± 0.0001 | 0.0009 ± 0.0002 | 0.0007 ± 0.0002 |
2 weeks | 0.0007 ± 0.0005 | 0.0011 ± 0.0002 | 0.0011 ± 0.0005 | 0.0014 ± 0.0006 |
Mean value ± SD | 0.0008 ± 0.0003 | 0.0009 ± 0.0003 | 0.0021 ± 0.0015 | 0.0012 ± 0.0006 |
p-value (ANOVA for dependent samples) | 0.0005 * | <0.0001 * | <0.0001 * | 0.0034 * |
p-value (ANOVA for independent groups) | <0.0001 * | |||
Tukey’s post-hoc test: | ||||
Arkona | - | |||
Helioseal | 0.854 | - | ||
Conseal | <0.0001 * | <0.0001 * | - | |
Helioseal Plus | 0.079 | 0.385 | <0.0001 * | - |
Time | Arkona (ppm/mg) | Helioseal (ppm/mg) | Conseal (ppm/mg) | Helioseal Plus (ppm/mg) |
---|---|---|---|---|
1 h | 0.0005 ± 0.0002 | 0.0005 ± 0.0001 | 0.0041 ± 0.0014 | 0.0012 ± 0.0002 |
3 h | 0.0006 ± 0.0002 | 0.0007 ± 0.0004 | 0.0019 ± 0.0007 | 0.0016 ± 0.0009 |
24 h | 0.0007 ± 0.0001 | 0.0008 ± 0.0004 | 0.0017 ± 0.0002 | 0.0015 ± 0.0005 |
48 h | 0.0013 ± 0.0004 | 0.0006 ± 0.0002 | 0.0016 ± 0.0003 | 0.0015 ± 0.0005 |
72 h | 0.0009 ± 0.0002 | 0.0007 ± 0.0002 | 0.0012 ± 0.0003 | 0.0005 ± 0.0001 |
96 h | 0.0005 ± 0.0001 | 0.0005 ± 0.0001 | 0.0007 ± 0.0002 | 0.0004 ± 0.0001 |
1 week | 0.0007 ± 0.0002 | 0.0007 ± 0.0001 | 0.0009 ± 0.0001 | 0.0007 ± 0.0001 |
2 weeks | 0.0010 ± 0.0005 | 0.0010 ± 0.0003 | 0.0012 ± 0.0005 | 0.0013 ± 0.0004 |
Mean value ± SD | 0.0008 ± 0.0004 | 0.0007 ± 0.0003 | 0.0017 ± 0.0012 | 0.0011 ± 0.0006 |
p-value (ANOVA for dependent samples) | 0.0004 * | 0.143 | <0.0001 * | 0.0001 * |
p-value (ANOVA for independent groups) | <0.0001 * | |||
Tukey’s post-hoc test: | ||||
Arkona | - | |||
Helioseal | 0.936 | - | ||
Conseal | <0.0001 * | <0.0001 * | - | |
Helioseal Plus | 0.190 | 0.049 * | 0.0009 * | - |
Age | Daily Fluoride Intake Requirements of the Human Body in mg/day | Upper Acceptable Limit of Fluoride Intake in mg/day |
---|---|---|
0–6 months | 0.01 | 0.7 |
6–12 months | 0.5 | 0.9 |
1–3 years | 0.7 | 1.3 |
4–8 years | 1.0 | 2.2 |
9–13 years | 2.0 | 2.8 |
14–18 years | 3.0 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fita, K.; Dobrzyński, M.; Ziętek, M.; Diakowska, D.; Watras, A.; Wiglusz, R.J. Assessment of Microstructure and Release of Fluoride Ions from Selected Fissure Sealants: An In Vitro Study. Materials 2021, 14, 4936. https://doi.org/10.3390/ma14174936
Fita K, Dobrzyński M, Ziętek M, Diakowska D, Watras A, Wiglusz RJ. Assessment of Microstructure and Release of Fluoride Ions from Selected Fissure Sealants: An In Vitro Study. Materials. 2021; 14(17):4936. https://doi.org/10.3390/ma14174936
Chicago/Turabian StyleFita, Katarzyna, Maciej Dobrzyński, Marta Ziętek, Dorota Diakowska, Adam Watras, and Rafal Jakub Wiglusz. 2021. "Assessment of Microstructure and Release of Fluoride Ions from Selected Fissure Sealants: An In Vitro Study" Materials 14, no. 17: 4936. https://doi.org/10.3390/ma14174936
APA StyleFita, K., Dobrzyński, M., Ziętek, M., Diakowska, D., Watras, A., & Wiglusz, R. J. (2021). Assessment of Microstructure and Release of Fluoride Ions from Selected Fissure Sealants: An In Vitro Study. Materials, 14(17), 4936. https://doi.org/10.3390/ma14174936