Calibration of Partial Safety Factors of Sample Masonry Structures
Abstract
:1. Introduction to the Design of Masonry Structures
1.1. The Issue of Masonry Structures
- volume of all holes (percentage in gross volume),
- single hole volume (percentage in gross volume),
- declared thickness of internal and external walls,
- declared equivalent thickness of internal and external walls (% of gross width).
- group 1—masonry units made of autoclaved aerated concrete (AAC), natural and artificial stone
- group 2 and 3—vertically hollow masonry units
- group 4—horizontally hollow masonry units
1.2. Partial Safety Factors in Masonry Structures
2. The Idea of a Probabilistic Approach to Structure Design
3. Case Study: Experimental Tests of Example Masonry Structures
- brick masonry pillars on M5 ordinary cement and lime mortar with dimensions of 250 × 250 mm and height of 2615 mm—six identical models were tested: five models under uniform load, one model tested cyclically—Figure 5;
- masonry walls made of autoclaved aerated concrete blocks on thin-layer mortar with dimensions of 240 × 1000 mm and height of 2700 mm—six identical models were tested—Figure 6.
3.1. Tests of Masonry Components
3.2. Basic Tests of Selected Masonry Structures
4. Application of the Probabilistic Method to Determine the Level of Partial Safety Factors of Tested Structures
- for normal distribution
- for logarithmic—normal distribution
- for normal distribution
- for logarithmic—normal distribution
- for normal distribution
- for logarithmic–normal distribution
- for a brick pillar on general purpose mortar
- for AAC masonry wall on a thin-layer mortar
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jasiński, R.; Drobiec, Ł.; Mazur, W. Validation of Selected Non-Destructive Methods for Determining the Compressive Strength of Masonry Units Made of Autoclaved Aerated Concrete. Materials 2019, 12, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Małyszko, L.; Orłowicz, R. Konstrukcje murowe. Zarysowania i naprawy; Publishing House of the University of Warmia and Mazury: Olsztynie, Poland, 2000. (In Polish) [Google Scholar]
- Małyszko, L. Modelowanie Zniszczenia w Konstrukcjach Murowych z Uwzględnieniem Anizotropii; University of Warmia and Mazury Publishing House: Olsztyn, Poland, 2000. (In Polish) [Google Scholar]
- Eurocode 6: Design of Masonry Structures-Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures. EN 1996-1-1, 2005. Available online: https://eurocodes.jrc.ec.europa.eu/showpage.php?id=136 (accessed on 27 August 2021).
- Edgell, G.J.; Bright, N.J.; Heath, M. Characteristic Compressive Strength of UK Masonry: A Review. In Proceedings of the 6th International Masonry Conference, London, UK, 4–6 November 2002. [Google Scholar]
- Schubert, P. Eigenschaftswerte von Mauerwerk, Mauersteinen und Mauuermörtel. Mauerwerk Kalender; Ernst & Sohn: Berlin, Germany, 2004; pp. 65–84. [Google Scholar]
- Konstrukcje Murowe. PN-B-03002. 2007. Available online: https://sklep.pkn.pl/pn-b-03002-2007p.html (accessed on 27 August 2021). (In Polish).
- Drobiec, Ł. Obliczanie Wytrzymałości na Ściskanie muru ze Zbrojeniem w Spoinach Wspornych. Monografia pod Redakcją Mirosława Brodniewicza i Jolanty Parusiel: Scientific and Research Problems of Construction, Volume II; Building and Engineering Structures, Publishing House of the Białystok University of Technology: Bialystok, Poland, 2007. (In Polish) [Google Scholar]
- Drobiec, Ł.; Jasiński, R.; Piekarczyk, A. Właściwości murów z elementów silikatowych produkowanych w Polsce. Część I. Wytrzymałość muru na ściskanie. In Construction Review; Main Board of the Polish Association of Construction Engineers and Technicians: Warsaw, Poland, 2013; pp. 26–33. (In Polish) [Google Scholar]
- Kubica, J. Niezbrojone Ściany Murowe Poddane Odkształceniom Postaciowym Wywołanym Nierównomiernymi Przemieszczeniami Podłoża; Publishing house of the Silesian University of Technology: Gliwice, Poland, 2003; p. 196. (In Polish) [Google Scholar]
- Jasiński, R.; Drobiec, Ł.; Kubica, J. Influences of Shape and Size Specimen Elements on Load Capacity and Deformation of Unreinforced Clay Brick Masonry under Compression. In Proceedings of the 12th International Brick/Block Masonry Conference, Madrid, Spain, 25–28 June 2000; pp. 517–523. [Google Scholar]
- Amin, Z. Kryteria Doboru Metod Wzmacniania Ściennych Konstrukcji Murowych. Ph.D. Thesis, Cracow University of Technology, Cracow, Poland, 1988. (In Polish). [Google Scholar]
- Bukowski, Ł.; Szojda, L. Analysis of brick-wall structural behavior under compression in its plane. Procedia Eng. 2017, 193, 329–336. [Google Scholar] [CrossRef]
- Matysek, P. Identyfikacja Wytrzymałości na Ściskanie i Odkształcalności Murów Ceglanych w Obiektach Istniejących; Publishing House of the Krakow University of Technology: Krakow, Poland, 2014. (In Polish) [Google Scholar]
- Drobiec, Ł. Ściany obciążone głownie pionowo według PN-EN 1996-1 i PN-EN 1996-3. In Proceedings of the XXVI Polish Workshop of Structural Designers, Szczyrk, Poland, 9–12 March 2011. (In Polish). [Google Scholar]
- Galman, I. Influence of load direction on behaviour and mechanical parameters of clay-brick masonry walls under cyclic compression. Archit. Civ. Eng. Environ. 2016, 1, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Koltsida, I.S.; Tomor, A.K.; Booth, C.A. Strain evolution of brick masonry under cyclic compressive loading. Mater. Struct. 2019, 52, 76. [Google Scholar] [CrossRef] [Green Version]
- Thamboo, J.; Bandara, J.; Perera, S.; Navaratnam, S.; Poologanathan, K.; Corradi, M. Experimental and Analytical Study of Masonry Subjected to Uniaxial Cyclic Compression. Materials 2020, 13, 4505. [Google Scholar] [CrossRef] [PubMed]
- Zięba, J.; Skrzypczak, I. Analysis of reliability of compressed masonry structures. Open Eng. 2020, 10, 462–468. [Google Scholar] [CrossRef]
- Masonry Constructions. PN-B-03002, 1999. Available online: https://sklep.pkn.pl/pn-b-03002-1999p.html (accessed on 27 August 2021).
- Obliczenia Statyczne i Projektowanie. PN-87/B-03002, 1987. Available online: https://sklep.pkn.pl/pn-b-03002-1987-az1-1997p.html (accessed on 27 August 2021). (In Polish).
- Zięba, J.; Buda-Ożóg, L.; Skrzypczak, I. Factors determining the quality of masonry–differentiation of resistance and reliability. Bud. Archit. 2020, 19, 139–152. [Google Scholar] [CrossRef]
- Zięba, J.; Buda-Ożóg, L.; Skrzypczak, I. Multi-stage analysis of reliability of an example masonry construction. Arch. Civ. Eng. 2021, 67, 275–292. [Google Scholar]
- Gajownik, R.; Sieczkowski, J. Współczynniki bezpieczeństwa i wytrzymałość obliczeniowa muru na ściskanie wg EC6 w wybranych państwach UE. Materiały Budowlane 2010, 4, 62–63. (In Polish) [Google Scholar]
- Storey, N. Safety-Critical Computer Systems (Nachdr); Prentice Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Eurocode–Basis of Structural Design. PN-EN 1990, 2002. Available online: https://eurocodes.jrc.ec.europa.eu/showpage.php?id=130 (accessed on 27 August 2021).
- Moreira, V.N.; Matos, J.C.; Oliveira, D.V. Probabilistic-based assessment of a masonry arch bridge considering inferential procedures. Eng. Struct. 2017, 134, 61–73. [Google Scholar] [CrossRef]
- Ávila, F.; Puertas, E.; Gallego, R. Probabilistic reliability assessment of existing masonry buildings: The church of San Justo y Pastor. Eng. Struct. 2020, 223, 111160. [Google Scholar] [CrossRef]
- Woliński, S. Niezawodność konstrukcji budowlanych. W: Budowictwo Ogólne; T.3. Arkady: Warszawa, Poland, 2008; pp. 376–419. (In Polish) [Google Scholar]
- Brehm, E.; Lissel, S.L. Reliability of unreinforced masonry bracing walls. In Proceedings of the 15th International Brick and Block Masonry Conference, Florianópolis, Brazil, 3–6 June 2012. [Google Scholar]
- Graubner, C.A.; Glowienka, S. Stochastic modelling of modern masonry. In Proceedings of the International Brick and Block Masonry Conference, Sydney, Australia, 17–20 February 2008. [Google Scholar]
- Holicky, M.; Markova, J. Calibration of Reliability Elements for a Column. In Proceedings of the JCSS Workshop on Reliability Based Code Calibration, Zurich, Switzerland, 21–22 March 2002. [Google Scholar]
- Schueremans, L. Probabilistic Evaluation of Structural Unreinforced Masonry. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2001. [Google Scholar]
- Jemioło, S.; Małyszko, L. MES i Modelowanie Konstytutywne w Analizie Zniszczenia Konstrukcji Murowych; Publishing House of the University of Warmia and Mazury: Olsztynie, Poland, 2013. (In Polish) [Google Scholar]
- Glowienka, S. Zuverlässigkeit von Mauerwerkswänden aus großformatigen Steinen. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2007. [Google Scholar]
- JCSS. JCSS Probabilistic Model Code; Joint Committee on Structural Safety: Zurich, Switzerland, 2000; ISBN 978-3-909386-79-6. [Google Scholar]
- Schueremans, L.; Van Gemert, D. Evaluating the reliability of structural masonry elements using the response surface technique In the reliability of structural masonry. In Proceedings of the 8th International Conference on Durability of Building Materials and Components, Vancouver, BC, Canada, 30 May–3 June 1999; Lacasse, M.A., Vainer, D.J., Eds.; Institute for Research in Construction: Ottawa, ON, Canada, 1999; pp. 1330–1342. [Google Scholar]
- Schueremans, L.; Van Gemert, D. Probability Density Functions for Masonry Material Parameters—A Way to Go? Structural Analysis of Historical Constructions: New Delhi, India, 2006. [Google Scholar]
- Rajzer, V.D. Rasczet i normirowanije Nadeżnosti Stroitelych Konstrukcji; Stroizdat: Moskva, Poland, 1995. [Google Scholar]
- Zięba, A. Analiza danych w Naukach Ścisłych i Technice; Polish Scientific Publishers PWN: Warszawa, Poland, 2013. (In Polish) [Google Scholar]
- Zielińska, M.; Rucka, M. Non-Destructive Assessment of Masonry Pillars using Ultrasonic Tomography. Materials 2018, 11, 2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasiński, R. Identification of Stress States in Compressed Masonry Walls Using a Non-Destructive Technique (NDT). Materials 2020, 13, 2852. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R.; Stebel, K.; Kielan, P. Use of the AE Effect to Determine the Stresses State in AAC Masonry Walls under Compression. Materials 2021, 14, 3459. [Google Scholar] [CrossRef] [PubMed]
- Methods of Test for Masonry. Part 1—Determination of Compressive Strength. PN-EN 1052-1, 2000. Available online: https://sklep.pkn.pl/pn-en-1052-1-2000p.html (accessed on 27 August 2021).
- Methods of Test for Mortar for Masonry. Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. PN-EN 1015, 2001. Available online: https://sklep.pkn.pl/pn-en-1015-11-2001p.html (accessed on 27 August 2021).
- Methods of Test for Masonry Units. Part 1: Determination of Compressive Strength. PN-EN 772-1, 2003. Available online: https://sklep.pkn.pl/pn-en-772-1-2011e.html (accessed on 27 August 2021).
- Urbańska, K. Zastosowanie systemu Aramis do pomiarów odkształceń konstrukcji murowych. Zeszyty Naukowe 2017, 66, 48–59. (In Polish) [Google Scholar]
- Müller, P.; Miccoli, L.; Fontana, P.; Ziegert, C. Development of partial safety factors for earth block masonry. Mater. Struct. 2017, 50, 31. [Google Scholar] [CrossRef]
- Woliński, S. Ocena niepewności modeli nośności elementów żelbetowych. Budownictwo i Architektura 2013, 12, 203–210. (In Polish) [Google Scholar] [CrossRef]
- Słowik, M.; Skrzypczak, I.; Kotynia, R.; Kaszubska, M. The application of a probabilistic method to the reliability analysis of longitudinally reinforced concrete beams. Procedia Eng. 2017, 193, 273–280. [Google Scholar] [CrossRef]
- Domański, T.; Matysek, P. The reliability of masonry structures—Evaluation methods for historical buildings. Czas. Tech. 2018, 9, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Drobiec, Ł.; Jasiński, R.; Piekarczyk, A.; Galman, I. Badania ścian z cegły w różnych stanach obciążenia. Inżynieria i Budownictwo 2010, 66, 315–322. (In Polish) [Google Scholar]
- Jasiński, R. Badania i Modelowanie Murowanych ścian Usztywniających. Ph.D. Thesis, Silesian University of Technology, Gliwice, Poland, 2017. (In Polish). [Google Scholar]
Masonry Configuration | Algorithm for Determining the Characteristic Strength |
---|---|
Masonry made of any masonry units on general purpose mortar or lightweight mortar | |
Masonry made of clay units of group 1 and 4, calcium silicate, aggregate ~ concrete and autoclaved aerated concrete units where fb ≥ 2.4 MPa on thin layer mortar | |
masonry made of autoclaved Aerated concrete units where fb < 2.4 MPa on thin layer mortar | |
Masonry made of clay units of group 2 and 3 |
Masonry Production Category | Class of Execution of Works | |
---|---|---|
A | B | |
I | 1.7 | 2.2 |
II | 2.2 | 2.5 |
Material | Class of Execution of Works | ||||
---|---|---|---|---|---|
1 | 2(A) | 3(B) | 4 | 5 | |
Masonry made with units of category I, designed mortar | 1.5 | 1.7 | 2.0 | 2.2 | 2.5 |
Masonry made with units of category I, prescribed mortar | 1.7 | 2.0 | 2.2 | 2.5 | 2.7 |
Masonry made with units of category II, any mortar | 2.0 | 2.2 | 2.5 | 2.7 | 3.0 |
Reliability Class | ||
---|---|---|
1 Year Reference Period | 50 Years Reference Period | |
RC3 | ; | ; |
RC2 | ; | ; |
RC1 | ; | ; |
Author | Random Variable | |
---|---|---|
(Holicky, Markova 2002 [32]) | 0.20 | compressive strength |
(Schueremans 2001 [33]) | 0.19 | compressive strength |
(Grauber, Glovienka 2008 [31]) | 0.20 | compressive strength |
(Brehm, Lissel 2012 [30]) | 0.17–0.19 | compressive strength |
Model Properties | The Classic Method of Data Evaluation | Data Evaluation Immunity Method | |||||
---|---|---|---|---|---|---|---|
Average Value | Standard Deviation | Coefficient of Variation | Median | Standard Deviation | Coefficient of Variation | ||
Models of clay brick pillars | fk [MPa] | 7.63 | 1.23 | 16.1% | 8.17 | 1.38 | 16.9% |
Ey [MPa] | 5296 | 1392 | 26.3% | 5573 | 2222 | 39.9% | |
νxy | 0.27 | 0.04 | 16.1% | 0.30 | 0.05 | 15.3% | |
Wall model of AAC | fk [MPa] | 1.95 | 0.14 | 7.1% | 1.97 | 0.22 | 11.0% |
Ey [MPa] | 1434 | 479 | 33.4% | 1295 | 350 | 27.1% | |
νxy | 0.21 | 0.04 | 19.2% | 0.20 | 0.04 | 20.0% |
n | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 20 | 30 | ∞ |
---|---|---|---|---|---|---|---|---|---|---|---|
vx known | 2.31 | 2.01 | 1.89 | 1.83 | 1.80 | 1.77 | 1.74 | 1.72 | 1.68 | 1.67 | 1.64 |
vx unknown | - | - | 3.37 | 2.63 | 2.33 | 2.18 | 2.00 | 1.92 | 1.76 | 1.73 | 1.64 |
Type of Masonry Material/Distribution | Partial Safety Factors | |||
---|---|---|---|---|
γm | γRd | γM | ||
Brick pillar on general purpose mortar | N * | 1.36 | 1.07 | 1.45 |
LN ** | 1.20 | 1.08 | 1.30 | |
AAC masonry wall on a thin-layer mortar | N * | 1.12 | 1.00 | 1.12 |
LN ** | 1.09 | 1.00 | 1.09 |
No. | Type of Masonry Material | Research Author | Average Compressive Strength | Coefficient of Variation |
---|---|---|---|---|
1 | Clay brick | (Drobiec i inni, 2010 [52]) | 9.55 | 5.6 |
2 | Masonry units from AAC | (Jasiński, 2017 [53]) | 2.97 | 14.0 |
3 | Silicate masonry units | (Jasiński, 2017 [53]) | 11.29 | 4.0 |
Type of Masonry Material/Distribution | Partial Safety Factors | |||
---|---|---|---|---|
γm | γRd | γM | ||
Various (own research + literature) | N * | 1.18 | 1.10 | 1.30 |
LN ** | 1.14 | 1.10 | 1.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zięba, J.; Skrzypczak, I.; Buda-Ożóg, L. Calibration of Partial Safety Factors of Sample Masonry Structures. Materials 2021, 14, 5003. https://doi.org/10.3390/ma14175003
Zięba J, Skrzypczak I, Buda-Ożóg L. Calibration of Partial Safety Factors of Sample Masonry Structures. Materials. 2021; 14(17):5003. https://doi.org/10.3390/ma14175003
Chicago/Turabian StyleZięba, Joanna, Izabela Skrzypczak, and Lidia Buda-Ożóg. 2021. "Calibration of Partial Safety Factors of Sample Masonry Structures" Materials 14, no. 17: 5003. https://doi.org/10.3390/ma14175003
APA StyleZięba, J., Skrzypczak, I., & Buda-Ożóg, L. (2021). Calibration of Partial Safety Factors of Sample Masonry Structures. Materials, 14(17), 5003. https://doi.org/10.3390/ma14175003