0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sriphan, S.; Charoonsuk, T.; Maluangnont, T.; Vittayakorn, N. High-performance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMS composite film modified with Ti0.8O2 nanosheets and silver nanopowders cofillers. ACS Appl. Energy Mater. 2019, 2, 3840–3850. [Google Scholar] [CrossRef]
- Suo, G.; Yu, Y.; Zhang, Z.; Wang, S.; Zhao, P.; Li, J.; Wang, X. Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Appl. Mater. Interfaces 2016, 8, 34335–34341. [Google Scholar] [CrossRef] [PubMed]
- Alluri, N.R.; Chandrasekhar, A.; Vivekananthan, V.; Purusothaman, Y.; Selvarajan, S.; Jeong, J.H.; Kim, S.J. Scavenging biomechanical energy using high-performance, flexible BaTiO3 nanocube/PDMS composite films. ACS Sustain. Chem. Eng. 2017, 5, 4730–4738. [Google Scholar] [CrossRef]
- Zeng, Z.; Gai, L.; Wang, X.; Lin, D.; Wang, S.; Luo, H.; Wang, D. A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2-2 composite. Appl. Phys. Lett. 2017, 110, 103501. [Google Scholar] [CrossRef]
- Cheng, K.C.; Chan, H.L.; Choy, C.L.; Yin, Q.; Luo, H.; Yin, Z. Single crystal PMN-0.33PT/epoxy 1-3 composites for ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1177–1183. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lu, G.; Chen, J.J.; Jing, J.C.; Huo, T.; Chen, R.; Jiang, L.; Zhou, Q.; Chen, Z. PMN-PT/Epoxy 1-3 composite based ultrasonic transducer for dual-modality photoacoustic and ultrasound endoscopy. Photoacoustics 2019, 15, 100138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Liu, D.; Zhang, Q.; Wang, W.; Ren, B.; Zhao, X.; Luo, H. Fabrication of angle beam two-element ultrasonic transducers with PMN–PT single crystal and PMN–PT/epoxy 1–3 composite for NDE applications. Sens. Actuators A Phys. 2011, 168, 223–228. [Google Scholar] [CrossRef]
- Das, S.; Biswal, A.K.; Parida, K.; Choudhary, R.; Roy, A. Electrical and mechanical behavior of PMN-PT/CNT based polymer composite film for energy harvesting. Appl. Surf. Sci. 2018, 428, 356–363. [Google Scholar] [CrossRef]
- Kang, S.W.; Cho, S.Y.; Bu, S.D.; Han, J.K.; Lee, G.J.; Lee, M.K. Effect of the Number of PZT Coatings on the Crystal Structure and Piezoelectric Properties in PZT-CNT Nanocomposites. J. Korean Phys. Soc. 2018, 72, 1209–1213. [Google Scholar] [CrossRef]
- Singh, M.; Singh, J.; Kumar, M.; Kumar, S. Investigations on multiferroic properties of lead free (1-x)BCZT-xCZFMO based particulate ceramic composites. Solid State Sci. 2020, 108, 106380. [Google Scholar] [CrossRef]
- Mane, S.M.; Tirmali, P.M.; Ranjit, B.; Khan, M.; Khan, N.; Tarale, A.N.; Kulkarni, S.B. Studies on magnetocapacitance, dielectric, ferroelectric, and magnetic properties of microwave sintered (1-x)(Ba0.8Sr0.2TiO3)-x(Co0.9Ni0.1Fe2O4) multiferroic composite. Solid State Sci. 2018, 81, 43–50. [Google Scholar] [CrossRef]
- Vopson, M.M. Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Hu, J.; Li, Z.; Nan, C.W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Paliwal, A.; Tomar, M.; Gupta, V. Multiferroic BFO/BTO multilayer structures based magnetic field sensor. Phys. B Condens. Matter 2019, 571, 1–4. [Google Scholar] [CrossRef]
- Grigalaitis, R.; Petrović, M.V.; Bobić, J.; Dzunuzovic, A.; Sobiestianskas, R.; Brilingas, A.; Stojanović, B.; Banys, J. Dielectric and magnetic properties of BaTiO3–NiFe2O4 multiferroic composites. Ceram. Int. 2014, 40, 6165–6170. [Google Scholar] [CrossRef]
- Jaitanong, N.; Yimnirun, R.; Chaipanich, A. Effect of compressive stress on the ferroelectric hysteresis behavior in 0–3 PMN-PT/cement composites. Ferroelectr. Lett. 2011, 38, 11–17. [Google Scholar] [CrossRef]
- Chaipanich, A.; Rianyoi, R.; Potong, R.; Suriya, W.; Jaitanong, N.; Chindaprasirt, P. Dielectric properties of 2-2 PMN-PT/cement composites. Ferroelectr. Lett. Sect. 2012, 39, 76–80. [Google Scholar] [CrossRef]
- Chaipanich, A.; Jaitanong, N. Effect of PZT particle size on the electromechanical coupling coefficient of 0-3 PZT-cement composites. Ferroelectr. Lett. 2009, 36, 37–44. [Google Scholar] [CrossRef]
- Newnham, R.E.; Amin, A. Smart systems: Microphones, fish farming, and beyond. Chemtech 1999, 29, 38–47. [Google Scholar]
- Xin, C.; Shifeng, H.; Jun, C.; Zongjin, L. Piezoelectric, dielectric, and ferroelectric properties of 0-3 ceramic/cement composites. J. Appl. Phys. 2007, 101, 094110. [Google Scholar] [CrossRef]
- Wagh, A.S.; Jeong, S.Y. Chemically bonded phosphate ceramics: I, a dissolution model of formation. J. Am. Ceram. Soc. 2003, 86, 1838–1844. [Google Scholar] [CrossRef]
- Wagh, A.S.; Grover, S.; Jeong, S.Y. Chemically bonded phosphate ceramics: II, warm-temperature process for alumina ceramics. J. Am. Ceram. Soc. 2003, 86, 1845–1849. [Google Scholar] [CrossRef]
- Wagh, A.S.; Jeong, S.Y. Chemically bonded phosphate ceramics: III, reduction mechanism and its application to iron phosphate ceramics. J. Am. Ceram. Soc. 2003, 86, 1850–1855. [Google Scholar] [CrossRef]
- Trombetta, R.; Inzana, J.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 2017, 45, 23–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Othman, Z.; Mohren, R.; Cillero-Pastor, B.; Shen, Z.; Lacroix, Y.; Guttenplan, A.; Birgani, Z.T.; Eijssen, L.; Luider, T.; van Rijt, S.; et al. Comparative proteomic analysis of human mesenchymal stromal cell behavior on calcium phosphate ceramics with different osteoinductive potential. Mater. Today Bio 2020, 7, 100066. [Google Scholar] [CrossRef]
- Bouler, J.M.; Pilet, P.; Gauthier, O.; Verron, E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017, 53, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhenyu, L.; Chunrong, R.; Yuanyuan, W.; Zhichao, H.; Xin, H.; Jie, W.; Mengliang, L.; Qiubai, D.; Khan, K.; et al. Study on solidification properties of chemically bonded phosphate ceramics for cesium radionuclides. Ceram. Int. 2020, 46, 14964–14971. [Google Scholar] [CrossRef]
- Plyushch, A.; Macutkevic, J.; Svirskas, S.; Banys, J.; Plausinaitiene, V.; Bychanok, D.; Maksimenko, S.; Selskis, A.; Sokal, A.; Lapko, K.; et al. Silicon carbide/phosphate ceramics composite for electromagnetic shielding applications: Whiskers vs. particles. Appl. Phys. Lett. 2019, 114, 183105. [Google Scholar] [CrossRef]
- Apanasevich, N.; Sokal, A.; Lapko, K.; Kudlash, A.; Lomonosov, V.; Plyushch, A.; Kuzhir, P.; Macutkevic, J.; Banys, J.; Okotrub, A. Phosphate ceramics- carbon nanotubes composites: Liquid aluminum phosphate vs. solid magnesium phosphate binder. Ceram. Int. 2015, 41, 12147–12152. [Google Scholar] [CrossRef]
- Bychanok, D.; Gorokhov, G.; Meisak, D.; Plyushch, A.; Kuzhir, P.; Sokal, A.; Lapko, K.; Sanchez-Sanchez, A.; Fierro, V.; Celzard, A.; et al. Exploring carbon nanotubes/BaTiO3/Fe3O4 nanocomposites as microwave absorbers. Prog. Electromagn. Res. C 2016, 66, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Haily, E.; Bih, L.; Lahmar, A.; Elmarssi, M.; Manoun, B. Effect of BaO–Bi2O3–P2O5 glass additive on structural, dielectric and energy storage properties of BaTiO3 ceramics. Mater. Chem. Phys. 2020, 241, 122434. [Google Scholar] [CrossRef]
- Gittings, J.; Bowen, C.; Turner, I.; Baxter, F.; Chaudhuri, J. Characterisation of ferroelectric-calcium phosphate composites and ceramics. J. Eur. Ceram. Soc. 2007, 27, 4187–4190. [Google Scholar] [CrossRef]
- Rubenis, K.; Zemjane, S.; Vecstaudza, J.; Bitenieks, J.; Locs, J. Densification of amorphous calcium phosphate using principles of the cold sintering process. J. Eur. Ceram. Soc. 2021, 41, 912–919. [Google Scholar] [CrossRef]
- Wang, J.; Luo, P.; Wang, J.; Zhan, L.; Wei, Y.; Zhu, Y.; Yang, S.; Zhang, K. Microwave-sintering preparation and densification behavior of sodium zirconium phosphate ceramics with ZnO additive. Ceram. Int. 2020, 46, 3023–3027. [Google Scholar] [CrossRef]
- Obradovic, N.; Dordevic, N.; Peleš, A.; Filipovic, S.; Mitrić, M.; Pavlović, V.B. The influence of compaction pressure on the density and electrical properties of cordierite-based ceramics. Sci. Sinter. 2015, 47, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gao, H.; Zhang, Z.; Wen, R.; Wang, G.; Mu, J.; Che, H.; Zhang, X. Effects of pressure on densification behaviour, microstructures and mechanical properties of boron carbide ceramics fabricated by hot pressing. Ceram. Int. 2017, 43, 6345–6352. [Google Scholar] [CrossRef]
- Luo, J.; Eitel, R. Aqueous tape casting of Al2O3 for multilayer co-fired ceramic based microfluidic chips with translucent windows. Ceram. Int. 2018, 44, 3488–3491. [Google Scholar] [CrossRef]
- Wongmaneerung, R.; Rittidech, A.; Khamman, O.; Yimnirun, R.; Ananta, S. Processing and properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-based ceramics. Ceram. Int. 2009, 35, 125–129. [Google Scholar] [CrossRef]
- Bellaiche, L.; Vanderbilt, D. Intrinsic piezoelectric response in perovskite alloys: PMN-PT versus PZT. Phys. Rev. Lett. 1999, 83, 1347. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xu, Z.; Li, Z.; Li, F. Investigation on the Thermal Stability of Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals. Ferroelectrics 2010, 402, 187–192. [Google Scholar] [CrossRef]
- Choi, S.; Shrout, T.R.; Jang, S.; Bhalla, A. Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Mater. Lett. 1989, 8, 253–255. [Google Scholar] [CrossRef]
- Chen, Y.; Or, D. Effects of Maxwell-Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Gallas, M.; Rosa, A.; Costa, T.; Da Jornada, J. High pressure compaction of nanosize ceramic powders. J. Mater. Res. 1997, 12, 764–768. [Google Scholar] [CrossRef]
- Panelli, R.; Ambrozio Filho, F. A study of a new phenomenological compacting equation. Powder Technol. 2001, 114, 255–261. [Google Scholar] [CrossRef]
- Nelson, S.O. Density-permittivity relationships for powdered and granular materials. IEEE Trans. Instrum. Meas. 2005, 54, 2033–2040. [Google Scholar] [CrossRef]
- Kudrevičius, T.; Plyushch, A.; Ivanov, M.; Svirskas, Š.; Plaušinaitienė, V.; Selskis, A.; Kuzhir, P.; Banys, J. Aqueous tape casting of the 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ceramic films: Production optimization and properties. J. Electroceramics 2021, 1–6. [Google Scholar] [CrossRef]
- Coube, O.; Riedel, H. Numerical simulation of metal powder die compaction with special consideration of cracking. Powder Metall. 2000, 43, 123–131. [Google Scholar] [CrossRef]
- Tsantilis, S.; Briesen, H.; Pratsinis, S.E. Sintering time for silica particle growth. Aerosol Sci. Technol. 2001, 34, 237–246. [Google Scholar] [CrossRef]
- Ersoy, N.M.; Aydoğdu, H.M.; Değirmenci, B.Ü.; Çökük, N.; Sevimay, M. The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomater. Odontol. Scand. 2015, 1, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Yang, G.; Li, C.; Li, C. A comprehensive sintering mechanism for thermal barrier coatings-Part III: Substrate constraint effect on healing of 2D pores. J. Am. Ceram. Soc. 2018, 101, 3636–3648. [Google Scholar] [CrossRef]
- Meisak, D.; Macutkevic, J.; Selskis, A.; Kuzhir, P.; Banys, J. Dielectric relaxation spectroscopy and synergy effects in epoxy/MWCNT/Ni@C composites. Nanomaterials 2021, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Santra, R.N.; Mukunda, P.; Nando, G.; Chaki, T. Thermogravimetric studies on miscible blends of ethylene-methyl acrylate copolymer (EMA) and polydimethylsiloxane rubber (PDMS). Thermochim. Acta 1993, 219, 283–292. [Google Scholar] [CrossRef]
- Zhu, J. Prevent Cement Strength Retrogression Under Ultra High Temperature. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 14 November 2019; Available online: https://onepetro.org/SPEADIP/proceedings-pdf/19ADIP/4-19ADIP/D041S119R002/1117384/spe-197739-ms.pdf (accessed on 3 September 2021). [CrossRef]
- Pernites, R.B.; Santra, A.K. Portland cement solutions for ultra-high temperature wellbore applications. Cem. Concr. Compos. 2016, 72, 89–103. [Google Scholar] [CrossRef]
Area | O | Mg | Al | P | Ti | Nb | Pb |
---|---|---|---|---|---|---|---|
1 | 71.26 | 4.41 | 1 | 2.44 | 3.73 | 6.39 | 10.77 |
2 | 53.68 | 46.14 | 0.1 | 0.02 | 0.02 | 0.02 | 0.03 |
Applied Pressure, MPa | 340 | 680 | 904 |
---|---|---|---|
Density, g/cm | 5.48 | 6.10 | 5.94 |
, at 100 kHz, 450 K | 109.5-1.05i | 148.67-1.68i | 147.56-1.41i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plyushch, A.; Mačiulis, N.; Sokal, A.; Grigalaitis, R.; Macutkevič, J.; Kudlash, A.; Apanasevich, N.; Lapko, K.; Selskis, A.; Maksimenko, S.A.; et al. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties. Materials 2021, 14, 5065. https://doi.org/10.3390/ma14175065
Plyushch A, Mačiulis N, Sokal A, Grigalaitis R, Macutkevič J, Kudlash A, Apanasevich N, Lapko K, Selskis A, Maksimenko SA, et al. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties. Materials. 2021; 14(17):5065. https://doi.org/10.3390/ma14175065
Chicago/Turabian StylePlyushch, Artyom, Nerijus Mačiulis, Aliaksei Sokal, Robertas Grigalaitis, Jan Macutkevič, Alexander Kudlash, Natalia Apanasevich, Konstantin Lapko, Algirdas Selskis, Sergey A. Maksimenko, and et al. 2021. "0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties" Materials 14, no. 17: 5065. https://doi.org/10.3390/ma14175065
APA StylePlyushch, A., Mačiulis, N., Sokal, A., Grigalaitis, R., Macutkevič, J., Kudlash, A., Apanasevich, N., Lapko, K., Selskis, A., Maksimenko, S. A., Kuzhir, P., & Banys, J. (2021). 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties. Materials, 14(17), 5065. https://doi.org/10.3390/ma14175065