Study Regarding the Kinematic 3D Human-Body Model Intended for Simulation of Personalized Clothes for a Sitting Posture
Abstract
:1. Introduction
2. Methods
2.1. Measuring Lower-Body Dimensions in the Standing and Sitting Postures of Real Persons
Data Analysis
2.2. Construction of the Kinematic 3D Body Model
2.2.1. Three-Dimensional Scanning
2.2.2. Armature as a Virtual Skeleton
2.2.3. Rigging
2.2.4. Measuring Scanned 3D Body Models
2.3. Virtual Simulation of Personalized-Trouser and Real-Trouser Prototypes
3. Results with Discussion
3.1. Comparison of Real Human Body Circumferences between Standing and Sitting Postures
3.2. Virtual 3D Body Models in Sitting Posture
3.2.1. Comparison of Scanned 3D Body-Models’ Measurements between the Standing (3DMSTA) and Sitting (3DMSIT) Postures and the Kinematic 3D Body Model in Sitting Posture (K3DMSIT)
3.3. Virtual Simulations of Personalized Trousers on Standing, Sitting and Kinematic Sitting 3D Body Models and Real-Trouser Prototypes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bragança, S.; Arezes, P.; Carvalho, M.; Ashdown, S. Current state of the art and enduring issues in anthropometric data collection. DYNA 2016, 83, 22–30. [Google Scholar] [CrossRef]
- Parker, C.J.; Gill, S.; Harwood, A.; Hayes, S.G.; Ahmed, M. A method for increasing 3D body scanning’s precision: Gryphon and consecutive scanning. Ergonomics 2021, 1–21, ahead of print. [Google Scholar] [CrossRef]
- Lapkovska, E.; Dāboliņa, I. Sizing for a Special Group of People: Best Practice of Human Body Scanning. In Environment. Technology, Resources, Proceedings of the 12th International Scientific and Practical Conference, Rezekne, Latvia, 20–22 June 2019; Rezekne Academy of Technologies: Rezekne, Latvia, 2019; Volume 1, pp. 136–141. [Google Scholar]
- Špelić, I.; Petrak, S. Complexity of 3D Human Body Scan Data Modelling. Tekstilec 2018, 61, 235–244. [Google Scholar] [CrossRef]
- Petrak, S.; Mahnić, M. Dynamic anthropometry—Defining protocols for automatic body measurement. Tekstilec 2017, 60, 254–262. [Google Scholar] [CrossRef]
- Gill, S. A review of research and innovation in garment sizing, prototyping and fitting. Textile Prog. 2015, 47, 1–85. [Google Scholar] [CrossRef]
- Gill, S.; Parker, C.J. Scan posture definition and hip girth measurement: The impact on clothing design and body scanning. Ergonomics 2017, 60, 1123–1136. [Google Scholar] [CrossRef]
- Parker, C.J.; Gill, S.; Hayes, S. 3D Body Scanning has Suitable Reliability: An Anthropometric Investigation for Garment Construction. In Proceedings of the 8th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Montreal, QC, Canada, 11–12 October 2017. [Google Scholar]
- Klepser, A.; Pirch, C. Is this real? Avatar Generation for 3D Garment Simulation. J. Text. Appar. Technol. Manag. (JTATM) 2021, 12, 1–11. [Google Scholar]
- Spahiu, T.; Shehi, E.; Piperi, E. Personalized avatars for virtual garment design and simulation. UNIVERSI—Int. J. Educ. Sci. Technol. Innov. Health Environ. 2015, 1, 56–63. [Google Scholar]
- Jevšnik, S.; Pilar, T.; Stjepanović, Z.; Rudolf, A. Virtual prototyping of garments and their fit to the body. In DAAAM International Scientific Book 2012; Katalinić, B., Ed.; DAAAM International Publishing: Vienna, Austria, 2012; pp. 601–618. [Google Scholar]
- Stjepanović, Z.; Rudolf, A.; Jevšnik, S.; Cupar, A.; Pogačar, V.; Geršak, J. 3D virtual prototyping of a ski jumpsuit based on a reconstructed body scan model. Bul. Inst. Politeh. Din Iaşi. Secţia Text. Pielärie 2011, 57, 17–30. [Google Scholar]
- Bogović, S.; Stjepanović, Z.; Cupar, A.; Jevšnik, S.; Rogina-Car, B.; Rudolf, A. The Use of New Technologies for the Development of Protective Clothing: Comparative Analysis of Body Dimensions of Static and Dynamic Postures and its Application. AUTEX Res. J. 2019, 19, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Nakić, M.; Bogović, S. Computational design of functional clothing for disabled people. Tekstilec 2019, 62, 23–33. [Google Scholar] [CrossRef]
- Cupar, A.; Stjepanović, Z.; Olaru, S.; Popescu, G.; Salistean, A.; Rudolf, A. CASP methodology applied in adapted garments for adults and teenagers with spine deformity. Ind. Text. 2019, 70, 435–446. [Google Scholar] [CrossRef]
- Bruniaux, P.; Cichocka, A.; Frydrych, I. 3D Digital Methods of Clothing Creation for Disabled People. Fibres Text. East. Eur. 2016, 24, 125–131. [Google Scholar] [CrossRef]
- Cieśla, K.; Frydrych, I.; Krzywinski, S.; Kyosev, Y. Design workflow for virtual design of clothing for pregnant women. Commun. Dev. Assem. Text. Prod. 2020, 1, 148–159. [Google Scholar]
- Olaru, S.; Popescu, G.; Anastasiu, A.; Mihăilă, G.; Săliştean, A. Innovative concept for personalized pattern design of safety equipment. Ind. Text. 2020, 71, 50–54. [Google Scholar] [CrossRef]
- Naglić, M.M.; Petrak, S.; Stjepanović, Z. Analysis of 3D construction of tight fit clothing based on parametric and scanned body models. In Proceedings of the 7th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 30 November–1 December 2016; pp. 302–313. [Google Scholar]
- Abtew, M.A.; Bruniaux, P.; Boussu, F. Development of adaptive bust for female soft body armour using three dimensional (3D) warp interlock fabrics: Three dimensional (3D) design process. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 052001. [Google Scholar] [CrossRef] [Green Version]
- Abtew, M.A.; Bruniaux, P.; Boussu, F.; Loghin, C.; Cristian, I.; Chen, Y. Development of comfortable and well-fitted bra pattern for customized female soft body armor through 3D design process of adaptive bust on virtual mannequin. Comput. Ind. 2018, 100, 7–20. [Google Scholar] [CrossRef]
- Abtew, M.A.; Bruniaux, P.; Boussu, F.; Loghin, C.; Cristian, I.; Chen, Y.; Wang, L. A systematic pattern generation system for manufacturing customized seamless multi-layer female soft body armour through dome-formation (moulding) techniques using 3D warp interlock fabrics. J. Manuf. Syst. 2018, 49, 61–74. [Google Scholar] [CrossRef]
- Abtew, M.A.; Bruniaux, P.; Boussu, F.; Loghin, C.; Cristian, I.; Chen, Y.; Wang, L. Female seamless soft body armor pattern design system with innovative reverse engineering approaches. Int. J. Adv. Manuf. Technol. 2018, 98, 2271–2285. [Google Scholar] [CrossRef]
- Hong, Y.; Zeng, X.; Bruniaux, P.; Liu, K. Interactive virtual try-on based three-dimensional garment block design for disabled people of scoliosis type. Text. Res. J. 2017, 87, 1261–1274. [Google Scholar] [CrossRef]
- Hong, Y.; Zeng, X.; Bruniaux, P.; Liu, K.; Chen, Y.; Zhang, X. Collaborative 3D-To-2D Tight-Fitting Garment Pattern Design Process for Scoliotic People. Fibres Text. East. Eur. 2017, 5, 113–117. [Google Scholar] [CrossRef]
- Hong, Y.; Bruniaux, P.; Zeng, X.; Liu, K.; Curteza, A.; Chen, Y.; Cedex, R. Visual-simulation-based personalized garment block design method for physically disabled people with scoliosis (PDPS). AUTEX Res. J. 2018, 18, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Stjepanović, Z.; Cupar, A.; Jevšnik, S.; Stjepanović, T.K.; Rudolf, A. Construction of adapted garments for people with scoliosis using virtual prototyping and CASP method. Ind. Text. 2016, 67, 141–148. [Google Scholar]
- Rudolf, A.; Stjepanović, Z.; Cupar, A. Designing the functional garments for people with physical disabilities or kyphosis by using computer simulation techniques. Ind. Text. 2019, 70, 182–191. [Google Scholar]
- Cupar, A.; Kaljun, J.; Pogačar, V.; Stjepanović, Z. Methodology framework for surface shape evaluation. In Proceedings of the International Conference on Mechanical Engineering (ME 2015), Viena, Austria, 15–17 March 2015; pp. 58–65. [Google Scholar]
- Mosleh, S.; Abtew, M.A.; Bruniaux, P.; Tartare, G.; Xu, Y.; Chen, Y. 3D Digital Adaptive Thorax Modelling of Peoples with Spinal Disabilities: Applications for Performance Clothing Design. Appl. Sci. 2021, 10, 4545. [Google Scholar] [CrossRef]
- Mosleh, S.; Abtew, M.A.; Bruniaux, P.; Tartare, G.; Chen, Y. Developing an Adaptive 3D Vertebrae Model of Scoliosis Patients for Customize Garment Design. Appl. Sci. 2021, 11, 3171. [Google Scholar] [CrossRef]
- Rudolf, A.; Cupar, A.; Kozar, T.; Stjepanović, Z. Study regarding the virtual prototyping of garments for paraplegics. Fibers Polym. 2015, 16, 1177–1192. [Google Scholar] [CrossRef]
- Rudolf, A.; Görlichová, L.; Kirbiš, J.; Repnik, J.; Salobir, A.; Selimović, I.; Drstvenšek, I. New technologies in the development of ergonomic garments for wheelchair users in a virtual environment. Ind. Text. 2017, 68, 83–94. [Google Scholar]
- Boulic, R.; Magnenat-Thalmann, N.; Thalmann, D. A global human walking model with real-time kinematic personification. The Visual Computer. Int. J. Comput. Graph. 1990, 6, 344–358. [Google Scholar]
- Jung, M.; Badler, N.I.; Noma, T. Animated Human Agents with Motion Planning Capability for 3D-Space Postural Goals. J. Vis. Comput. Animat. 1994, 5, 225–246. [Google Scholar] [CrossRef] [Green Version]
- Kalra, P.; Magnenat-Thalmann, N.; Moccozet, L.; Sannier, G.; Aubel, A.; Thalmann, D. Real-time animation of realistic virtual humans. IEEE Comput. Graph. Appl. 1998, 18, 42–56. [Google Scholar] [CrossRef]
- Seo, H.; Magnenat-Thalmann, N. An automatic modelling of human bodies from sizing parameters. In Proceedings of the 2003 Symposium on Interactive 3D Graphics, SI3D 2003, Monterey, CA, USA, 28–30 April 2003; pp. 19–26. [Google Scholar]
- Kozar, T.; Rudolf, A.; Cupar, A.; Jevšnik, S.; Stjepanovič, Z. Designing an adaptive 3D body model suitable for people with limited body abilities. J. Text. Sci. Eng. 2014, 4, 1–13. [Google Scholar]
- Leipner, A.; Krzywinski, S. 3D Product Development Based on Kinematic Human Models. In Proceedings of the 4th International Conference on 3D Body Scanning Technologies, Long Beach, CA, USA, 19–20 November 2013. [Google Scholar]
- Zhang, D.; Krzywinski, S. Development of a Kinematic Human Model for Clothing and High Performance Garments. In Proceedings of the 3DBODY.TECH 2019—10th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 22–23 October 2019; pp. 68–73. [Google Scholar]
- Zhang, D.; Krzywinski, S. Development of a Kinematic Human Model for Clothing Design/simulation. In Proceedings of the AUTEX2019—19th World Textile Conference on Textiles at the Crossroads, Ghent, Belgium, 11–15 June 2019. [Google Scholar]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pons-Moll, G.; Romero, J.; Mahmood, N.; Black, M.J. Dyna: A model of dynamic human shape in motion. ACM Trans. Graph. 2015, 34, 120. [Google Scholar] [CrossRef]
- Klepser, A.; Morlock, S.; Loercher, C.; Schenk, A. Functional measurements and mobility restriction (from 3D to 4D scanning). In Anthropometry, Apparel Sizing and Design, 2nd ed.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2020; pp. 169–199. [Google Scholar]
- ISO 8559-1:2017. Size Designation of Clothes—Part 1: Anthropometric Definitions for Body Measurement; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Blender 3D. Available online: https://www.blender.org/download/ (accessed on 25 May 2021).
- Blender Help. Available online: https://docs.blender.org/manual/en/latest/animation/armatures/introduction.html (accessed on 25 May 2021).
- Blender Help. Available online: https://docs.blender.org/manual/en/latest/animation/armatures/bones/structure.html (accessed on 25 May 2021).
- System, M.; Müller, S. Damenhose im Jeans-Stil. In Konstruktionen für Röcke und Hosen; Deutsche Bekleidungs-Akademie München, Rundschau Verlag: München, Germany, 1996; pp. 82–84. [Google Scholar]
- Walsh, L.K.; Restaino, R.; Martinez-Lemus, L.; Padilla, J. Prolonged leg bending impairs endothelial function in the popliteal artery. Physiol. Rep. 2017, 5, e13478. [Google Scholar] [CrossRef]
- Namkoong, S.; Shim, J.; Kim, S.; Shim, J. Effects of different sitting positions on skin temperature of the lower extremity. J. Phys. Ther. Sci. 2015, 27, 2637–2640. [Google Scholar] [CrossRef] [Green Version]
- Power, J. Fabric objective measurements for commercial 3D virtual garment simulation. Int. J. Cloth. Sci. Technol. 2013, 25, 423–439. [Google Scholar] [CrossRef] [Green Version]
- Sayem, A.S.M. Objective analysis of the drape behaviour of virtual shirt, part 1: Avatar morphing and virtual stitching. Int. J. Fash. Des. Technol. Educ. 2017, 10, 158–169. [Google Scholar] [CrossRef]
- Brubacher, K.; Tyler, D.; Apeagyei, P.; Venkatraman, P.; Brownridge, A.M. Evaluation of the Accuracy and Practicability of Predicting Compression Garment Pressure Using Virtual Fit Technology. Cloth. Text. Res. J. 2021. First Published. [Google Scholar] [CrossRef]
- Allsop, C.A. An Evaluation of Base Layer Compression Garments for Sportswear. Master’s Thesis, Manchester Metropolitan University, Manchester, UK, 2012. [Google Scholar]
- Sayem, A.S.M. Objective analysis of the drape behaviour of virtual shirt, part 2: Technical parameters and findings. Int. J. Fash. Des. Technol. Educ. 2017, 10, 180–189. [Google Scholar] [CrossRef]
- Sayem, A.S.M.; Bednall, A. A novel approach to fit analysis of virtual fashion clothing. In Proceedings of the 19th Edition of the International Foundation of Fashion Technology Institutes Conference (IFFTI 2017—Breaking the Fashion Rules), Amsterdam, The Netherlands, 28–30 March 2017; The Amsterdam Fashion Institute (AMFI): Amsterdam, The Netherlands, 2017. [Google Scholar]
- World Health Organization. Body Mass Index—BMI. Available online: https://www.euro.who.int/en/healthtopics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 13 May 2021).
- Gill, S. Improving garment fit and function through ease quantification. J. Fash. Mark. Manag. 2011, 15, 228–241. [Google Scholar] [CrossRef]
- Gill, S.; Chadwick, N. Determination of ease allowances included in pattern construction methods. Int. J. Fash. Des. Technol. Educ. 2009, 2, 23–31. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, G.; Qian, X. Research Overview on Apparel Fit. In Soft Computing in Information Communication Technology; Luo, J., Ed.; Advances in Intelligent and Soft Computing, AISC 161; Springer: Berlin/Heidelberg, Germany, 2012; pp. 39–44. [Google Scholar]
- Ng, R.; Cheung, L.; Yu, W. Dynamic ease allowance in arm Raising of Functional Garments. Sen’I Gakkaishi 2008, 64, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zeng, X.; Happiette, M.; Bruniaux, P.; Ng, R.; Yu, W. A new method of ease allowance generation for personalization of garment design. Int. J. Cloth. Sci. Technol. 2008, 20, 161–173. [Google Scholar] [CrossRef]
- McKinney, E.; Gill, S.; Dorie, A.; Roth, S. Body-to-Pattern Relationships in Women’s Trouser Drafting Methods: Implications for Apparel Mass Customization. Cloth. Text. Res. J. 2017, 35, 16–32. [Google Scholar] [CrossRef]
- Lim, H.-W.; Cassidy, T. A comparative study of trouser pattern making methods. J. Text. Eng. Fash. Technol. 2017, 1, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Petrova, A.; Ashdown, S.P. Three-Dimensional Body Scan Data Analysis: Body Size and Shape Dependence of Ease Values for Pants’ Fit. Cloth. Text. Res. J. 2008, 26, 227–252. [Google Scholar] [CrossRef]
- Schofield, N.A.; Ashdown, S.P.; Hethorn, J.; LaBat, K.; Salusso, C.J. Improving Pant Fit for Women 55 and Older through an Exploration of Two Pant Shapes. Cloth. Text. Res. J. 2006, 24, 147–160. [Google Scholar] [CrossRef]
- Pirch, C.; Klepser, A.; Morlock, S. Using 3D Scanning to Create 4D Motion Data for Clothing Simulation. In Proceedings of the 3DBODY.TECH 2020—11th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Online Conference, 17–18 November 2020; Available online: https://www.3dbody.tech/cap/papers2020.html (accessed on 13 May 2021).
- Zhang, D.; Wang, J.; Yang, Y. Design 3D garments for scanned human. J. Mech. Sci. Technol. 2014, 28, 2479–2487. [Google Scholar] [CrossRef]
Age and Body Attributes | Symbol | (xmin; xmax) | SD (cm) | CV (%) |
---|---|---|---|---|
Age (years) | A | 21.82 (20; 24) | 1.26 | 5.77 |
Body height (cm) | BH | 168.00 (158.00; 175.00) | 0.06 | 3.36 |
Body weight (kg) | BW | 67.73 (49.00; 95.00) | 13.57 | 20.03 |
Body mass index | BMI | 24.07 (16.37; 32.87) | 4.69 | 19.50 |
Bone Part Standing | Bone Head Location | Bone Tail Location | |||||
---|---|---|---|---|---|---|---|
Bone Name | x | y | z | x | y | z | Parent Bone |
Bone.002 | −6.25 | 61.55 | 1107.00 | −4.64 | 26.30 | 1333.00 | Bone.003 |
Bone.003 | −7.33 | 27.08 | 978.80 | −6.25 | 61.55 | 1107.00 | Bone.001 |
Bone.001 | −6.81 | 48.95 | 817.00 | −7.33 | 27.08 | 978.80 | Pelvis Master |
Pelvis Master | −6.81 | 48.97 | 722.40 | −6.81 | 48.95 | 817.00 | - |
Pelvis Son | −6.81 | 48.95 | 817.00 | −6.81 | 48.97 | 722.40 | Pelvis Master |
Leg L Base | 79.78 | −87.49 | 872.89 | 80.15 | −86.11 | 791.70 | Pelvis Son |
Leg L | 80.15 | −86.11 | 791.70 | 86.63 | −59.00 | 420.60 | Leg L Base |
Leg L.001 | 86.63 | −59.00 | 420.60 | 77.81 | −33.04 | 30.17 | Leg L |
Buttocks L | 79.77 | −87.49 | 872.89 | 89.68 | 72.03 | 720.10 | Leg L Base |
Buttocks L.001 | 79.77 | −87.49 | 872.89 | 137.90 | 1.46 | 835.90 | Buttocks L |
Leg R Base | −99.35 | −87.49 | 871.29 | −114.93 | −87.49 | 792.91 | Pelvis Son |
Leg R | −114.93 | −87.49 | 792.91 | −106.22 | −59.00 | 419.18 | Leg R Base |
Leg R.001 | −106.22 | −59.00 | 419.18 | −82.70 | −33.04 | 31.69 | Buttocks R |
Buttocks R | −99.35 | −87.49 | 871.29 | −108.00 | 71.90 | 719.70 | Leg R Base |
Buttocks R.001 | −99.35 | −87.49 | 871.29 | −145.33 | 1.80 | 854.00 | Buttocks R |
Bone Part Sitting | Bone Head Location | Bone Tail Location | |||||
---|---|---|---|---|---|---|---|
Bone Name | x | y | z | x | y | z | Parent Bone |
Bone.002 | −6.87 | 67.53 | 1112.00 | −3.75 | 22.40 | 1336.00 | Bone.003 |
Bone.003 | −7.42 | 51.64 | 980.30 | −6.87 | 67.53 | 1112.00 | Bone.001 |
Bone.001 | −6.81 | 48.97 | 817.00 | −7.42 | 51.64 | 980.30 | Pelvis Master |
Pelvis Master | −6.81 | 48.95 | 722.40 | −6.81 | 48.97 | 817.00 | - |
Pelvis Son | −6.81 | 48.97 | 817.00 | −6.81 | 48.95 | 722.40 | Pelvis Master |
Leg L Base | 79.78 | −87.50 | 872.90 | 80.15 | −86.11 | 791.70 | Pelvis Son |
Leg L | 80.15 | −86.11 | 791.70 | 179.80 | −446.10 | 783.40 | Leg L Base |
Leg L.001 | 179.80 | −446.10 | 783.40 | 206.70 | −482.80 | 396.10 | Leg L |
Buttocks L | 79.78 | −87.50 | 872.90 | 117.50 | 81.44 | 735.40 | Leg L Base |
Buttocks L.001 | 79.78 | −87.50 | 872.90 | 151.00 | −7.02 | 862.90 | Buttocks L |
Leg R Base | −99.34 | −87.50 | 871.30 | −94.96 | −85.95 | 791.60 | Pelvis Son |
Leg R | −94.96 | −85.95 | 791.60 | −187.30 | −447.90 | 783.30 | Leg R Base |
Leg R.001 | −187.30 | −447.90 | 783.30 | −202.10 | −485.20 | 394.70 | Buttocks R |
Buttocks R | −99.34 | −87.50 | 871.30 | −158.80 | 80.16 | 741.80 | Leg R Base |
Buttocks R.001 | −99.34 | −87.50 | 871.30 | −158.80 | −4.57 | 872.80 | Buttocks R |
Mechanical Parameters | Direction | Unit | Measured Value |
---|---|---|---|
Extensibility (E100) | warp | % | 0.93 |
weft | % | 5.60 | |
Bending rigidity (B) | warp | μNm | 19.08 |
weft | μNm | 7.46 | |
Shear rigidity (G) | - | Nm−1 | 189.23 |
Surface thickness (ST) | - | mm | 0.151 |
Surface mass (W) | - | gm−2 | 154.94 |
Body Dimensions | Symbol | MSTA | MSIT | DMSTA-MSIT | |||||
---|---|---|---|---|---|---|---|---|---|
(cm) (cm) (cm) | SD (cm) | CV (%) | (cm) (cm) (cm) | SD (cm) | CV (%) | (cm) | (%) | ||
Waist circumference | WC | 77.25 61.00 102.50 | 10.15 | 13.14 | 77.98 62.50 104.00 | 10.64 | 13.64 | −0.73 | −0.94 1 |
Hip circumference | HC | 106.61 87.00 130.00 | 11.17 | 10.47 | 109.84 90.00 135.00 | 11.58 | 10.54 | −3.23 | −3.03 |
Thigh circumference | TC | 61.95 50.00 74.00 | 7.30 | 11.78 | 62.77 50.00 75.00 | 7.53 | 11.99 | −0.82 | −1.32 |
Knee circumference | KC | 39.84 33.00 47.00 | 4.00 | 10.04 | 41.32 36.00 48.50 | 4.13 | 10.00 | −1.48 | −3.71 |
Basic Data/Body Measurements | WC | HC | TC | KC |
---|---|---|---|---|
BH | −0.057 | 0.086 | −0.001 | 0.189 |
BW | 0.916 | 0.949 | 0.920 | 0.940 |
BMI | 0.940 | 0.931 | 0.932 | 0.884 |
Basic Data/Body Measurements | DWCSTA-SIT | DHCSTA-SIT | DTCSTA-SIT | DKCSTA-SIT |
---|---|---|---|---|
BH | −0.287 | 0.135 | 0.118 | −0.377 |
BW | −0.501 | −0.286 | −0.301 | 0.004 |
BMI | −0.401 | −0.340 | −0.264 | 0.135 |
Measurements of 3D Body Models | Symbol | 3DMSTA | 3DMSIT | K3DMSIT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(cm) | SD (cm) | CV (%) | (cm) | SD (cm) | CV (%) | (cm) | SD (cm) | CV (%) | ||
Waist circumference | WC | 69.00 | 0.27 | 0.40 | 71.00 | 0.0 | 0.00 | 68.50 | 0.55 | 0.80 |
Hip circumference | HC | 97.50 | 0.65 | 0.67 | 103.00 | 1.44 | 1.40 | 96.00 | 0.71 | 0.74 |
Thigh circumference | TC | 54.50 | 0.35 | 0.65 | 57.50 | 0.57 | 1.00 | 57.50 | 0.89 | 1.57 |
Knee circumference | KC | 35.50 | 0.42 | 1.18 | 39.00 | 0.35 | 0.91 | 39.50 | 0.89 | 2.29 |
Measurements of 3D Body Models | Symbol | D3DMSTA-3DMSIT | D3DMSTA-K3DMSIT | D3DMSIT-K3DMSIT | |||
---|---|---|---|---|---|---|---|
(cm) | (%) | (cm) | (%) | (cm) | (%) | ||
Waist circumference | WC | −2.20 1 | −3.20 | 0.40 | 0.58 | 2.60 | 3.66 |
Hip circumference | HC | −5.40 | −5.54 | 1.40 | 1.46 | 6.80 | 6.61 |
Thigh circumference | TC | −2.80 | −5.14 | −2.60 | −4.55 | 0.20 | 0.35 |
Knee circumference | KC | −3.60 | −10.17 | −3.70 | −9.46 | 0.10 | −0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudolf, A.; Stjepanovič, Z.; Cupar, A. Study Regarding the Kinematic 3D Human-Body Model Intended for Simulation of Personalized Clothes for a Sitting Posture. Materials 2021, 14, 5124. https://doi.org/10.3390/ma14185124
Rudolf A, Stjepanovič Z, Cupar A. Study Regarding the Kinematic 3D Human-Body Model Intended for Simulation of Personalized Clothes for a Sitting Posture. Materials. 2021; 14(18):5124. https://doi.org/10.3390/ma14185124
Chicago/Turabian StyleRudolf, Andreja, Zoran Stjepanovič, and Andrej Cupar. 2021. "Study Regarding the Kinematic 3D Human-Body Model Intended for Simulation of Personalized Clothes for a Sitting Posture" Materials 14, no. 18: 5124. https://doi.org/10.3390/ma14185124
APA StyleRudolf, A., Stjepanovič, Z., & Cupar, A. (2021). Study Regarding the Kinematic 3D Human-Body Model Intended for Simulation of Personalized Clothes for a Sitting Posture. Materials, 14(18), 5124. https://doi.org/10.3390/ma14185124