Factors Influencing the Load-Bearing Capacity of Rock as Base Material for Post-Installed Anchors
Abstract
:1. Introduction
- the suitability of rock as base material for post-installed anchors can be assessed by rock classification systems;
- for assessing the load-bearing capacity, a small-scale investigation in the area of the intended fastening area is necessary;
- the presence of joints as well as their condition, such as weathering, influences the load-bearing capacity;
- in the case of poor rock quality, merely base material failure could be observed rather than failure of the anchor;
- in terms of good rock properties, which means fewer inhomogeneities, a variety of failure mechanisms have been found;
- it can also be derived that the load-bearing behavior is influenced mainly by rock properties, rather than the anchoring system;
- disturbed fastening areas (influenced by joints) show analogies to cracked concrete, while undisturbed ones (no influence by joints) behave comparable to non-cracked concrete;
- similarities between the failure mechanisms of rock and concrete were observed.
2. Materials and Methods
2.1. Test Program
2.2. Examined Geology
2.2.1. Engineering Assessment of Examined Geology
2.2.2. Selection of Anchor Positions
3. Results
3.1. Influence of the Fastening Area (Disturbed/Undisturbed)
3.2. Influence of Joints on the Load-Bearing Capacity
3.2.1. Joint Quantity
3.2.2. Joint Weathering
3.3. Base Material Assessment by Rebound Hammer
4. Discussion
4.1. General
4.2. Relation between Rebound Value and Load-Bearing Capacity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- DIN Deutsches Institut für Normung. DIN EN 1992-4:2018: Eurocode 2—Bemessung und Konstruktion von Stahlbeton und Spannbetontragwerken—Teil 4: Bemessung der Verankerung von Befestigungen in Beton; Beuth Verlag GmbH: Berlin, Germany, 2019. [Google Scholar]
- EOTA—European Organisation for Technical Approvals. EOTA TR054: 2016-04—Design Methods for Anchorages with Metal Injection Anchors for Use in Masonry; EOTA: Brussels, Belgium, 2016. [Google Scholar]
- Fuchs, W.; Eligehausen, R. The CC-design method to determine the concrete break out load of fastenings. Beton-Stahlbetonbau 1995, 1, 6–9. [Google Scholar] [CrossRef]
- Eligehausen, R.; Appl, J.; Lehr, B.; Meszaros, J.; Fuchs, W. Tragverhalten und Bemessung von Befestigungen mit Verbunddübeln unter Zugbeanspruchung—Teil 1: Einzeldübel mit großem Achs- und Randabstand. Beton-Stahlbetonbau 2004, 7, 561–571. [Google Scholar] [CrossRef]
- Appl., J. Tragverhalten und Bemessung von Verbunddübeln. Beton-Stahlbetonbau 2005, 45, 9–12. [Google Scholar] [CrossRef]
- Contrafatto, L.; Cosenza, R. Behaviour of post-installed adhesive anchors in natural stone. Constr. Build. Mater. 2014, 68, 355–369. [Google Scholar] [CrossRef]
- Contrafatto, L.; Cosenza, R. Prediction of the pull-out strength of chemical anchors in natural stone. Frat. Integrità Strutt. 2014, 29, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Tóth, M.; Hlavička, V.; Lublóy, É.; Török, Á.; Balázs, G.L. Performance of expansion and bonded anchors installed into concrete in comparison to limestone and granite. Bond Concr. 2012, 1, 527–532. [Google Scholar]
- Lamplmair, S.; Zeman, O.; Voit, K. Beurteilung von Fels als Befestigungsuntergrund für nachträgliche Befestigungen mit geringer Einbindetiefe. Bautechnik 2021, in press. [Google Scholar] [CrossRef]
- Matura, A.; Heinz, H. Geologische Karte der Republik Österreich 1:50,000—Erläuterungen zu Blatt 37 Mautern; Geologische Bundesanstalt: Mautern, Germany, 1989. [Google Scholar]
- Fuchs, W. Geologische Karte der Republik Österreich 1:50,000—61 Hainburg an der Donau—62 Pressburg; Geologische Bundesanstalt: Hainburg an der Donau, Austria, 1985. [Google Scholar]
- Geotec ZT GmbH Nfg.KG. Geologisches Gutachten; Geotec ZT GmbH Nfg.KG: Bad Deutsch-Altenburg, Austria, 2005. [Google Scholar]
- Schnabel, W. Geologische Karte der Republik Österreich 1:50,000—58 Baden; Geologische Bundesanstalt: Baden, Germany, 1997. [Google Scholar]
- Geologie Weixelberger GmbH. Geologisches Gutachten; Geologie Weixelberger GmbH: Gaaden, Austria, 2014. [Google Scholar]
- Roetzel, R. Geologische Karte der Republik Österreich 1:50,000—22 Hollabrunn; Geologische Bundesanstalt: Hollabrunn, Austria, 1998. [Google Scholar]
- Geologische Bundesanstalt. Arbeitstagung Geologische Bundesanstalt, Haltepunkt 16—Limberg; Geologische Bundesanstalt: Wien, Austria, 1991. [Google Scholar]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering; Wiley-Interscience: Hoboken, NJ, USA, 1989. [Google Scholar]
- Marinos, P.; Hoek, E. GSI: A geologically friendly tool for rock mass strength estimation. In Proceedings of the GeoEng2000 at the International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, 19–24 November 2000; pp. 1422–1446. [Google Scholar]
- Aydin, A. ISRM Suggested method for determination of the Schmidt hammer rebound hardness: Revised version. Int. J. Rock Mech. Min. Sci. 2009, 3, 1365–1609. [Google Scholar] [CrossRef]
- Thuro, K. Empfehlung Nr. 5‚ Punktlastversuche an Gesteinsproben ‘des Arbeitskreises 3.3‚ Versuchstechnik Fels’ der Deutschen Gesellschaft für Geotechnik. Bautechnik 2010, 87, 322–330. [Google Scholar] [CrossRef]
- Katz, O.; Reches, Z.; Roegiers, J.-C. Evaluation of mechanical rock properties using a Schmidt Hammer. Int. J. Rock Mech. Min. Sci. 2000, 4, 723–728. [Google Scholar] [CrossRef]
- Eligehausen, R.; Appl, J.; Lehr, B.; Meszaros, J.; Fuchs, W. Tragverhalten und Bemessung von Befestigungen mit Verbunddübeln unter Zugbeanspruchung—Teil 2: Dübelgruppen und Befestigungen am Bauteilrand. Beton-Stahlbetonbau 2005, 10, 856–864. [Google Scholar] [CrossRef]
- Austrian Standards International. ÖNORM EN ISO 14680 Geotechnical Investigation and Testing—Identification and Classification of Rock; Austrian Standards International: Vienna, Austria, 2019. [Google Scholar]
Granulite | Dolomitic | Dolomite | Granite | |
---|---|---|---|---|
Limestone | ||||
Location | west of Vienna, Austria | east of Vienna, Austria | southwest of Vienna, Austria | northwest of Vienna, Austria |
Geology, description of base material | metamorphic | sedimentary | sedimentary | metamorphic |
narrowly fractured, fine- to medium-grained components | tectonically strongly utilized, crystallized joints filled with calcite layers | tectonically strongly utilized, narrow joint distance (centimeters to meters), joints filled with sand and clay | tectonically utilized, medium-grained metagranite | |
[10] | [11,12] | [13,14] | [15,16] | |
Geological tests performed per location: point load test, rebound hammer, compressive strength (cylinder), Geological Strength Index (GSI), Rock Mass Rating (RMR) | ||||
Number of test anchors (hef = 70 mm, optically evaluated) | ||||
Disturbed area | 15 | 15 | 10 (2) | 15 (2) |
Undisturbed area | 15 | 15 | - (1) | 15 |
Assessments per installation point: rebound hammer, failure load (Fu), failure mode, joint condition (weathering), joint quantity |
UCS | UCS | Uniaxial | Geological | Rock Mass | |
---|---|---|---|---|---|
Rock Type | Point Load | Schmidt | Cylindrical | Strength | Rating |
Index | Hammer | Compressive Strength | Index | ||
(N/mm2) | (N/mm2) | (N/mm2) | in acc. to [18] | in acc. to [19] | |
Granulite | 93.5 | 59.0 | 120.1 (x̅, n = 3) | 52–58 | 76.8 |
Dolomitic limestone | 82.8 | 61.0 | 57.5 (x̅, n = 2) | 42–47 | 82.6 |
Dolomite | 38.4 | 13.0 | 28.5 (from test report) | 25–29 | 54.0 |
Granite | 103.7 | 58.7 | 78.7 (x̅, n = 3) | 54–59 | 86.2 |
Parameter | Unit | Granulite | Limestone | Dolomite | Granite |
---|---|---|---|---|---|
Fu,m | kN | 32.2 | 38.1 | 10.5 | 45.4 |
coefficient of variation | % | 58% | 51% | 81% | 63% |
Fu,m1 disturbed fastening area | kN | 20.1 | 28.3 | 10.5 | 25.3 |
coefficient of variation | % | 49% | 58% | 81% | 68% |
Fu,m2 undisturbed fastening area | kN | 50.3 | 52.8 | n.a. | 65.5 |
coefficient of variation | % | 26% | 26% | n.a. | 35% |
Deviation undisturbed/disturbed | % | −60% | −48% | n.a. | −61% |
Granulite | Limestone | Dolomite | Granite | |
---|---|---|---|---|
standard deviations Figure 4 | ||||
no weathering | n.a. | 0.0 | n.a. | 15.0 |
low weathering | 10.2 | 7.2 | n.a. | 2.5 |
moderate weathering | 9.4 | 16.0 | 0.0 | 8.4 |
high weathering | 1.1 | 0.0 | 3.1 | 0.0 |
standard deviations Figure 6 | ||||
no weathering | n.a. | 0.0 | n.a. | 2.9 |
low weathering | 4.2 | 3.3 | n.a. | 3.6 |
moderate weathering | 14.9 | 2.3 | 0.0 | 4.9 |
high weathering | 13.8 | 0.0 | 9.0 | 0.0 |
Base Material Quality | Poor | Average (1) | Average (2) | Good | |
---|---|---|---|---|---|
rebound values per anchor >36 | no | yes | no | yes | |
disturbed/undisturbed | disturbed | disturbed | undisturbed | undisturbed | |
mean Fu | /in kN | 21.20 | 34.96 | 41.37 | 58.12 |
CV | 69% | 42% | 60% | 34% | |
minimal Fu | /in kN | 3.90 | 18.60 | 7.00 | 25.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamplmair, S.; Zeman, O.; Voit, K. Factors Influencing the Load-Bearing Capacity of Rock as Base Material for Post-Installed Anchors. Materials 2021, 14, 5130. https://doi.org/10.3390/ma14185130
Lamplmair S, Zeman O, Voit K. Factors Influencing the Load-Bearing Capacity of Rock as Base Material for Post-Installed Anchors. Materials. 2021; 14(18):5130. https://doi.org/10.3390/ma14185130
Chicago/Turabian StyleLamplmair, Stefan, Oliver Zeman, and Klaus Voit. 2021. "Factors Influencing the Load-Bearing Capacity of Rock as Base Material for Post-Installed Anchors" Materials 14, no. 18: 5130. https://doi.org/10.3390/ma14185130
APA StyleLamplmair, S., Zeman, O., & Voit, K. (2021). Factors Influencing the Load-Bearing Capacity of Rock as Base Material for Post-Installed Anchors. Materials, 14(18), 5130. https://doi.org/10.3390/ma14185130