Oxides for Rectenna Technology
Abstract
:1. Introduction
2. Overview of Metal Insulator Metal Diodes as Terahertz Rectifiers
2.1. Single Insulator MIM Diodes
2.2. Multiple Insulator MInM Diodes, n = 2 and 3
3. Permittivity and Scaling Issues
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, R.L. A proposed new concept for a solar-energy converter. J. Eng. Power 1972, 94, 73–77. [Google Scholar] [CrossRef]
- Berland, B. Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell; Final Report; National Renewable Energy Lab.: Golden, CO, USA, 2003; NREL/SR-520-33263.
- Brown, W.C. Optimization of the efficiency and other properties of the rectenna element. In Proceedings of the 1976 IEEE-MTT-S International Microwave Symposium, Cherry Hill, NJ, USA, 14–16 June 1976; pp. 142–144. [Google Scholar]
- Moddel, G. Will rectenna solar cells be practical? In Rectenna Sol Cells; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–24. [Google Scholar]
- Hall, S.; Mitrovic, I.Z.; Sedghi, N.; Yao-chun, C.S.; Huang, Y.; Ralph, J.F. Energy harvesting using THz electronics. In Funct Nanomater Devices Electron Sensors Energy Harvest; Springer: Berlin/Heidelberg, Germany , 2014; pp. 241–265. [Google Scholar]
- Kotter, D.K.; Novack, S.D.; Slafer, W.D.; Pinhero, P.J. Theory and manufacturing processes of solar nanoantenna electromagnetic collectors. J. Sol. Energy Eng. 2010, 132, 11014. [Google Scholar] [CrossRef]
- Hashem, I.E.; Rafat, N.H.; Soliman, E.A. Nanocrescent antenna as a transceiver for optical communication systems. In Proceedings of the 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), Raleigh, NC, USA, 4–8 August 2014; pp. 39–45. [Google Scholar]
- Gadalla, M.N.; Abdel-Rahman, M.; Shamim, A. Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci. Rep. 2014, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jayaswal, G.; Belkadi, A.; Meredov, A.; Pelz, B.; Moddel, G.; Shamim, A. Optical rectification through an Al2O3 based MIM passive rectenna at 28.3 THz. Mater. Today Energy 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Kausar, A.S.M.Z.; Reza, A.W.; Latef, T.A.; Ullah, M.H.; Karim, M.E. Optical nano antennas: State of the art, scope and challenges as a biosensor along with human exposure to nano-toxicology. Sensors 2015, 15, 8787–8831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, W.F.; Totemeier, T.C. Smithells Metals Reference Book; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Nieuwenhuys, B.E.; Bouwman, R.; Sachtler, W.M.H. The changes in work function of group Ib and VIII metals on xenon adsorption, determined by field electron and photoelectron emission. Thin Solid Films 1974, 21, 51–58. [Google Scholar] [CrossRef]
- Greiner, M.T.; Lu, Z.-H. Thin-film metal oxides in organic semiconductor devices: Their electronic structures, work functions and interfaces. NPG Asia Mater. 2013, 5, e55. [Google Scholar] [CrossRef]
- Herner, S.B.; Belkadi, A.; Weerakkody, A.; Pelz, B.; Moddel, G. Responsivity–resistance relationship in MIIM diodes. IEEE J. Photovolt. 2018, 8, 499–504. [Google Scholar] [CrossRef]
- Herner, S.B.; Weerakkody, A.D.; Belkadi, A.; Moddel, G. High performance MIIM diode based on cobalt oxide/titanium oxide. Appl. Phys. Lett. 2017, 110, 223901. [Google Scholar] [CrossRef] [Green Version]
- Michaelson, H.B. The work function of the elements and its periodicity. J. Appl. Phys. 1977, 48, 4729–4733. [Google Scholar] [CrossRef] [Green Version]
- Mitrovic, I.Z.; Weerakkody, A.D.; Sedghi, N.; Ralph, J.F.; Hall, S.; Dhanak, V.R.; Luo, Z.; Beeby, S. Controlled modification of resonant tunneling in metal-insulator-insulator-metal structures. Appl. Phys. Lett. 2018, 112, 012902. [Google Scholar] [CrossRef] [Green Version]
- Alimardani, N.; Conley, J.F., Jr. Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes. Appl. Phys. Lett. 2013, 102, 143501. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, B.J.; Rivière, J.C. The work function of polycrystalline tungsten foil. Proc. Phys. Soc. 1963, 81, 590. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.; Issa, K.; Zia, M.F.; Alduraibi, M.; Siraj, M.; Ragheb, A.; Alshebeili, S. High sensitivity vanadium–vanadium pentoxide–aluminium metal–insulator–metal diode. Micro Nano Lett. 2018, 13, 680–683. [Google Scholar] [CrossRef]
- Kretsinger, R.H.; Uversky, V.N.; Permyakov, E.A. Encyclopedia of Metalloproteins; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Matula, R.A. Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 1979, 8, 1147–1298. [Google Scholar] [CrossRef] [Green Version]
- Radi, H.A.; Rasmussen, J.O. Principles of Physics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 10, pp. 973–978. [Google Scholar]
- Edwards, T.C.; Steer, M.B. Foundations for Microstrip Circuit Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Desai, P.D.; Chu, T.K.; James, H.M.; Ho, C.Y. Electrical resistivity of selected elements. J. Phys. Chem. Ref. Data 1984, 13, 1069–1097. [Google Scholar] [CrossRef]
- Maglić, K.D.; Perović, N.L.; Vuković, G.S.; Zeković, L.P. Specific heat and electrical resistivity of niobium measured by subsecond calorimetric technique. Int. J. Thermophys. 1994, 15, 963–972. [Google Scholar] [CrossRef]
- Wilke, I.; Oppliger, Y.; Herrmann, W.; Kneubühl, F.K. Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation. Appl. Phys. A 1994, 58, 329–341. [Google Scholar] [CrossRef]
- Fumeaux, C.; Herrmann, W.; Kneubühl, F.K.; Rothuizen, H. Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation. Infrared. Phys. Technol. 1998, 39, 123–183. [Google Scholar] [CrossRef] [Green Version]
- Shriwastava, S.; Tripathi, C.C. Metal–insulator–metal diodes: A potential high frequency rectifier for rectenna application. J. Electron. Mater. 2019, 48, 2635–2652. [Google Scholar] [CrossRef]
- Alimardani, N.; Conley, J.F., Jr. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling. Appl. Phys. Lett. 2014, 105, 082902. [Google Scholar] [CrossRef] [Green Version]
- Cowell, E.W., III; Wager, J.F.; Gibbons, B.J.; Keszler, D.A. Amorphous Multi-Component Metallic Thin Films for Electronic Devices. U.S. Patent No 8,436,337, May, 2013. [Google Scholar]
- Wu, H.; Wang, L.-S. A study of nickel monoxide (NiO), nickel dioxide (ONiO), and Ni(O2) complex by anion photoelectron spectroscopy. J. Chem. Phys. 1997, 107, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J. Band offsets, Schottky barrier heights, and their effects on electronic devices. J. Vac. Sci. Technol. A 2013, 31, 50821. [Google Scholar] [CrossRef]
- Huang, M.L.; Chang, Y.C.; Chang, C.H.; Lin, T.D.; Kwo, J.; Wu, T.B.; Hong, M. Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure. Appl. Phys. Lett. 2006, 89, 012903. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Wang, X.; Li, W.; Zhi, Y.; Wang, X.; Li, P.; Tang, W. Energy-band alignments at ZnO/Ga2O3 and Ta2O5/Ga2O3 heterointerfaces by X-ray photoelectron spectroscopy and electron affinity rule. J. Appl. Phys. 2019, 126, 045707. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J. Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 2000, 18, 1785–1791. [Google Scholar] [CrossRef]
- Koffyberg, F.P.; Benko, F.A. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J. Appl. Phys. 1982, 53, 1173–1177. [Google Scholar] [CrossRef]
- Alimardani, N.; King, S.W.; French, B.L.; Tan, C.; Lampert, B.P.; Conley, J.F., Jr. Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes. J. Appl. Phys. 2014, 116, 024508. [Google Scholar] [CrossRef] [Green Version]
- Gutsev, G.L.; Jena, P.; Zhai, H.-J.; Wang, L.-S. Electronic structure of chromium oxides, CrOn− and CrOn (n = 1–5) from photoelectron spectroscopy and density functional theory calculations. J. Chem. Phys. 2001, 115, 7935–7944. [Google Scholar] [CrossRef]
- Miura, A.; Uraoka, Y.; Fuyuki, T.; Yoshii, S.; Yamashita, I. Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node. J. Appl. Phys. 2008, 103, 74503. [Google Scholar] [CrossRef]
- Monaghan, S.; Hurley, P.K.; Cherkaoui, K.; Negara, M.A.; Schenk, A. Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures. Solid State Electron. 2009, 53, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Xing, K.; Zhang, S.; Tsai, A.; Xiao, H.; Creedon, D.L.; Yianni, S.A.; McCallum, J.C.; Pakes, C.I.; Qi, D.-C. High-electron-affinity oxide V2O5 enhances surface transfer doping on hydrogen-terminated diamond. Diam. Relat. Mater. 2020, 108, 107865. [Google Scholar] [CrossRef]
- Afanas’ev, V.V.; Shamuilia, S.; Badylevich, M.; Stesmans, A.; Edge, L.F.; Tian, W.; Schlom, D.G.; Lopes, J.M.J.; Roeckerath, M.; Schubert, J. Electronic structure of silicon interfaces with amorphous and epitaxial insulating oxides: Sc2O3, Lu2O3, LaLuO3. Microelectron. Eng. 2007, 84, 2278–2281. [Google Scholar] [CrossRef]
- Hosseini, S.; Vahedpour, M.; Shaterian, M.; Rezvani, M.A. Investigation of structural and optoelectronic properties of Sc2O3 nanoclusters: A DFT study. Phys. Chem. Res. 2018, 6, 493–504. [Google Scholar]
- Weerakkody, A.; Belkadi, A.; Moddel, G. Nonstoichiometric nanolayered Ni/NiO/Al2O3/CrAu Metal-Insulator-Metal infrared rectenna. ACS Appl. Nano Mater. 2021, 4, 2470–2475. [Google Scholar] [CrossRef]
- Kurmaev, E.Z.; Wilks, R.G.; Moewes, A.; Finkelstein, L.D.; Shamin, S.N.; Kuneš, J. Oxygen x-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides. Phys. Rev. B 2008, 77, 165127. [Google Scholar] [CrossRef] [Green Version]
- Mitrovic, I.Z.; Althobaiti, M.; Weerakkody, A.D.; Dhanak, V.R.; Linhart, W.M.; Veal, T.D.; Sedghi, N.; Hall, S.; Chalker, P.R.; Tsoutsou, D.; et al. Ge interface engineering using ultra-thin La2O3 and Y2O3 films: A study into the effect of deposition temperature. J. Appl. Phys. 2014, 115, 114102. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.-M.; Liu, W.-J.; Xiao, Y.-F.; Huan, Y.-W.; Liu, H.; Ding, S.-J.; Zhang, D.W. Investigation of energy band at atomic-layer-deposited ZnO/β-Ga2O3 heterojunctions. Nanoscale. Res. Lett. 2018, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Aarik, J.; Aidla, A.; Kiisler, A.-A.; Uustare, T.; Sammelselg, V. Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition. Thin Solid Films 1997, 305, 270–273. [Google Scholar] [CrossRef]
- Valladares, L.D.L.S.; Salinas, D.H.; Dominguez, A.B.; Najarro, D.A.; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J.A.; Majima, Y. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films 2012, 520, 6368–6374. [Google Scholar] [CrossRef]
- Weerakkody, A.D.; Sedghi, N.; Mitrovic, I.Z.; Van Zalinge, H.; Noureddine, I.N.; Hall, S.; Wrench, J.S.; Chalker, P.R.; Phillips, L.J.; Treharne, R.; et al. Enhanced low voltage nonlinearity in resonant tunneling metal–insulator–insulator–metal nanostructures. Microelectron. Eng. 2015, 147, 298–301. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Rajab, F.M.; Al-Abbas, S.M. Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties. AIP Adv. 2014, 4, 27121. [Google Scholar] [CrossRef]
- Singh, J.; Verma, V.; Kumar, R.; Kumar, R. Structural, optical and electrical characterization of epitaxial Cr2O3 thin film deposited by PLD. Mater. Res. Express 2019, 6, 106406. [Google Scholar] [CrossRef]
- Shinde, V.R.; Mahadik, S.B.; Gujar, T.P.; Lokhande, C.D. Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci. 2006, 252, 7487–7492. [Google Scholar] [CrossRef]
- Thiagarajan, S.; Thaiyan, M.; Ganesan, R. Physical property exploration of highly oriented V2O5 thin films prepared by electron beam evaporation. New J. Chem. 2015, 39, 9471–9479. [Google Scholar] [CrossRef]
- Mitrovic, I.Z.; Weerakkody, A.D.; Sedghi, N.; Hall, S.; Ralph, J.F.; Wrench, J.S.; Chalker, P.R.; Luo, Z.; Beeby, S. Tunnel-barrier rectifiers for optical nantennas. ECS Trans. 2016, 72, 287. [Google Scholar] [CrossRef] [Green Version]
- Sollner, T.; Goodhue, W.D.; Tannenwald, P.E.; Parker, C.D.; Peck, D.D. Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Appl. Phys. Lett. 1983, 43, 588–590. [Google Scholar] [CrossRef] [Green Version]
- Maraghechi, P.; Foroughi-Abari, A.; Cadien, K.; Elezzabi, A.Y. Enhanced rectifying response from metal-insulator-insulator-metal junctions. Appl. Phys. Lett. 2011, 99, 253503. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.R.; Gonzalez, F.J.; Boreman, G.D. Antenna-coupled metal-oxide-metal diodes for dual-band detection at 92.5 GHz and 28 THz. Electron. Lett. 2004, 40, 116–118. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.C.D.; Laibowitz, R.B.; Libsch, F.R.; LaBianca, N.C.; Chiniwalla, P.P. Efficient waveguide-integrated tunnel junction detectors at 1.6 µm. Opt. Express. 2007, 15, 16376–16389. [Google Scholar] [CrossRef]
- Choi, K.; Yesilkoy, F.; Ryu, G.; Cho, S.H.; Goldsman, N.; Dagenais, M.; Peckerar, M. A focused asymmetric metal–insulator–metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis. IEEE Trans Electron Devices 2011, 58, 3519–3528. [Google Scholar] [CrossRef]
- Hoofring, A.B.; Kapoor, V.J.; Krawczonek, W. Submicron nickel-oxide-gold tunnel diode detectors for rectennas. J. Appl. Phys. 1989, 66, 430–437. [Google Scholar] [CrossRef]
- Azad, I.; Ram, M.K.; Goswami, D.Y.; Stefanakos, E. Fabrication and characterization of NiO based metal− insulator− metal diode using Langmuir-Blodgett method for high frequency rectification. AIP Adv. 2018, 8, 45219. [Google Scholar] [CrossRef]
- Zhuang, C.; Wang, L.; Dai, Z.; Yang, D. High frequency Ni-NiO-Ag metal-insulator-metal tunnel diodes fabricated via anodic aluminum oxide templates. ECS Solid State Lett. 2015, 4, P39. [Google Scholar] [CrossRef]
- Esfandiari, P.; Bernstein, G.; Fay, P.; Porod, W.; Rakos, B.; Zarandy, A.; Berland, B.; Boloni, L.; Boreman, G.; Lail, B.; et al. Tunable antenna-coupled metal-oxide-metal (MOM) uncooled IR detector. Infrared. Technol. Appl. XXXI 2005, 5783, 470. [Google Scholar]
- Krishnan, S.; La Rosa, H.; Stefanakos, E.; Bhansali, S.; Buckle, K. Design and development of batch fabricatable metal–insulator–metal diode and microstrip slot antenna as rectenna elements. Sens. Actuators A Phys. 2008, 142, 40–47. [Google Scholar] [CrossRef]
- Krishnan, S.; Stefanakos, E.; Bhansali, S. Effects of dielectric thickness and contact area on current-voltage characteristics of thin film metal-insulator-metal diodes. Thin Solid Films 2008, 516, 2244–2250. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Xu, C.; Li, D.; Chen, L.; Yang, D. Fabrication of Ni-NiO-Cu metal-insulator-metal tunnel diodes via anodic aluminum oxide templates. ECS Solid State Lett. 2012, 2, Q1. [Google Scholar] [CrossRef]
- Kaur, A.; Chahal, P. RF characterization of NiO and TiO2 based metal-insulator-metal (MIM) diodes on flexible substrates. IEEE Access 2018, 6, 55653–55660. [Google Scholar] [CrossRef]
- Bareis, M.; Tiwari, B.N.; Hochmeister, A.; Jegert, G.; Zschieschang, U.; Klauk, H.; Fabel, B.; Scarpa, G.; Koblmüller, G.; Bernstein, G.H.; et al. Nano antenna array for terahertz detection. IEEE Trans Microw. Theory Tech. 2011, 59, 2751–2757. [Google Scholar]
- Bean, J.A.; Tiwari, B.; Bernstein, G.H.; Fay, P.; Porod, W. Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol. B 2009, 27, 11–14. [Google Scholar] [CrossRef]
- Kinzel, E.C.; Brown, R.L.; Ginn, J.C.; Lail, B.A.; Slovick, B.A.; Boreman, G.D. Design of an MOM diode-coupled frequency-selective surface. Microw. Opt. Technol. Lett. 2013, 55, 489–493. [Google Scholar] [CrossRef]
- Bhatt, K.; Kumar, S.; Tripathi, C.C. Highly sensitive Al/Al2O3/Ag MIM diode for energy harvesting applications. AEU Int. J. Electron. Commun. 2019, 111, 152925. [Google Scholar] [CrossRef]
- Shriwastava, S.; Arya, D.S.; Sharma, S.; Singh, K.; Singh, P.; Tripathi, C.C. A laser patterned zero bias Au/Al2O3/Mo metal-insulator-metal diode rectifier for RF detection. Solid State Electron. 2020, 171, 107870. [Google Scholar] [CrossRef]
- Tekin, S.B.; Weerakkody, A.D.; Sedghi, N.; Hall, S.; Werner, M.; Wrench, J.S.; Chalker, P.R.; Mitrovic, I.Z. Single and triple insulator Metal-Insulator-Metal diodes for infrared rectennas. Solid State Electron. 2021, 185, 108096. [Google Scholar] [CrossRef]
- Hobbs, P.C.D.; Laibowitz, R.B.; Libsch, F.R. Ni–NiO–Ni tunnel junctions for terahertz and infrared detection. Appl. Opt. 2005, 44, 6813–6822. [Google Scholar] [CrossRef] [Green Version]
- Bean, J.A.; Weeks, A.; Boreman, G.D. Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors. IEEE J. Quantum Electron. 2010, 47, 126–135. [Google Scholar] [CrossRef]
- Dodd, L.E.; Wood, D.; Gallant, A.J. Optimizing MOM diode performance via the oxidation technique. In Sensors; IEEE: New York, NY, USA, 2011; pp. 176–179. [Google Scholar]
- Urcuyo, R.; Duong, D.L.; Jeong, H.Y.; Burghard, M.; Kern, K. High performance graphene–oxide–metal diode through bias-induced barrier height modulation. Adv. Electron. Mater. 2016, 2, 1–6. [Google Scholar] [CrossRef]
- Singh, A.; Ratnadurai, R.; Kumar, R.; Krishnan, S.; Emirov, Y.; Bhansali, S. Fabrication and current–voltage characteristics of NiOx/ZnO based MIIM tunnel diode. Appl. Surf. Sci. 2015, 334, 197–204. [Google Scholar] [CrossRef]
- Khan, A.A.; Jayaswal, G.; Gahaffar, F.A.; Shamim, A. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectron. Eng. 2017, 181, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Azad, I.; Ram, M.K.; Goswami, D.Y.; Stefanakos, E. Fabrication and characterization of ZnO Langmuir–Blodgett film and its use in metal–insulator–metal tunnel diode. Langmuir 2016, 32, 8307–8314. [Google Scholar] [CrossRef]
- Zia, M.F.; Abdel-Rahman, M.R.; Al-Khalli, N.F.; Debbar, N.A. Fabrication and characterization of vanadium/vanadium pentoxide/vanadium (V/V2O5/V) tunnel junction diodes. Acta Phys. Pol. A 2015, 127, 1289–1291. [Google Scholar] [CrossRef]
- Dagenais, M.; Choi, K.; Yesilkoy, F.; Chryssis, A.N.; Peckerar, M.C. Solar spectrum rectification using nano-antennas and tunneling diodes. In Optoelectronic Integrated Circuits XII; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; p. 76050E. [Google Scholar]
- Choi, K.; Yesilkoy, F.; Chryssis, A.; Dagenais, M.; Peckerar, M. New process development for planar-type CIC tunneling diodes. IEEE Electron. Device Lett. 2010, 31, 809–811. [Google Scholar] [CrossRef]
- Periasamy, P.; Berry, J.J.; Dameron, A.A.; Bergeson, J.D.; Ginley, D.S.; O’Hayre, R.P. Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater. 2011, 23, 3080–3085. [Google Scholar] [CrossRef] [PubMed]
- Chin, M.L.; Periasamy, P.; O’Regan, T.P.; Amani, M.; Tan, C.; O’Hayre, R.P.; Berry, J.J.; Osgood III, R.M.; Parilla, P.A.; Ginley, D.S.; et al. Planar metal–insulator–metal diodes based on the Nb/Nb2O5/X material system. J. Vac. Sci. Technol. B 2013, 31, 051204. [Google Scholar] [CrossRef]
- Inac, M.; Shafique, A.; Ozcan, M.; Gurbuz, Y. Device characteristics of antenna-coupled metal-insulator-metal diodes (rectenna) using Al2O3, TiO2, and Cr2O3 as insulator layer for energy harvesting applications. In Thin Film Sol Energy Technol VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; p. 95610M. [Google Scholar]
- Aldrigo, M.; Dragoman, M.; Modreanu, M.; Povey, I.; Iordanescu, S.; Vasilache, D.; Dinescu, A.; Shanawani, M.; Masotti, D. Harvesting electromagnetic energy in the V-band using a rectenna formed by a bow tie integrated with a 6-nm-thick Au/HfO2/Pt Metal–Insulator–Metal diode. IEEE Trans Electron. Devices 2018, 65, 2973–2980. [Google Scholar] [CrossRef]
- Almalki, S.; Tekin, S.B.; Sedghi, N.; Hall, S.; Mitrovic, I.Z. Applicability of Sc2O3 versus Al2O3 in MIM rectifiers for IR rectenna. Solid State Electron. 2021, 184, 108082. [Google Scholar] [CrossRef]
- Grover, S.; Moddel, G. Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers. Solid State Electron. 2012, 67, 94–99. [Google Scholar] [CrossRef]
- Sedghi, N.; Ralph, J.F.; Mitrovic, I.Z.; Chalker, P.R.; Hall, S. Electron trapping at the high-κ/GeO2 interface: The role of bound states. Appl. Phys. Lett. 2013, 102, 092103. [Google Scholar] [CrossRef]
- Sedghi, N.; Zhang, J.W.; Ralph, J.F.; Huang, Y.; Mitrovic, I.Z.; Hall, S. Towards rectennas for solar energy harvesting. In Proceedings of the 2013 European Solid-State Device Research Conference (ESSDERC), Bucharest, Romania, 16–20 September 2013; pp. 131–134. [Google Scholar]
- Mistry, K.; Yavuz, M.; Musselman, K.P. Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes. J. Appl. Phys. 2017, 121, 184504. [Google Scholar] [CrossRef]
- Weerakkody, D.A.D.C. Engineered High-K Oxides. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2016. [Google Scholar]
- Noureddine, I.N.; Sedghi, N.; Mitrovic, I.Z.; Hall, S. Barrier tuning of atomic layer deposited Ta2O5 and Al2O3 in double dielectric diodes. J. Vac. Sci. Technol. B 2017, 35, 01A117. [Google Scholar] [CrossRef] [Green Version]
- Belkadi, A.; Weerakkody, A.; Moddel, G. Demonstration of resonant tunneling effects in metal-double-insulator-metal (MI2M) diodes. Nat. Commun. 2021, 12, 1–6. [Google Scholar] [CrossRef]
- Pelz, B.; Moddel, G. Demonstration of distributed capacitance compensation in a metal-insulator-metal infrared rectenna incorporating a traveling-wave diode. J. Appl. Phys. 2019, 125, 234502. [Google Scholar] [CrossRef] [Green Version]
- Elsharabasy, A.Y.; Negm, A.S.; Bakr, M.H.; Deen, M.J. Global optimization of rectennas for IR energy harvesting at 10.6 μm. IEEE J. Photovolt. 2019, 9, 232–239. [Google Scholar] [CrossRef]
- Matsuura, D.; Shimizu, M.; Yugami, H. High-current density and high-asymmetry MIIM diode based on oxygen-non-stoichiometry controlled homointerface structure for optical rectenna. Sci. Rep. 2019, 9, 1–7. [Google Scholar]
- Alshehri, A.H.; Shahin, A.; Mistry, K.; Ibrahim, K.H.; Yavuz, M.; Musselman, K.P. Metal-Insulator-Insulator-Metal diodes with responsivities greater than 30 AW−1 based on nitrogen-doped TiOx and AlOx insulator layers. Adv. Electron. Mater. 2021, 2021, 2100467. [Google Scholar] [CrossRef]
- Noureddine, I.N.; Sedghi, N.; Wrench, J.; Chalker, P.; Mitrovic, I.Z.; Hall, S. Fabrication and modelling of MInM diodes with low turn-on voltage. Solid State Electron. 2021, 184, 108053. [Google Scholar] [CrossRef]
- Elsharabasy, A.Y.; Bakr, M.H.; Deen, M.J. Towards an optimal MIIM diode for rectennas at 10.6 μml MIIM diode for rectennas at 10.6 μm. Results Mater. 2021, 11, 100204. [Google Scholar] [CrossRef]
- Maraghechi, P.; Foroughi-Abari, A.; Cadien, K.; Elezzabi, A.Y. Observation of resonant tunneling phenomenon in metal-insulator-insulator-insulator-metal electron tunnel devices. Appl. Phys. Lett. 2012, 100, 113503. [Google Scholar] [CrossRef]
- Xie, L.Y.; Xiao, D.Q.; Pei, J.X.; Huo, J.; Wu, X.; Liu, W.J.; Ding, S.J. Growth, physical and electrical characterization of nickel oxide thin films prepared by plasma-enhanced atomic layer deposition using nickelocene and oxygen precursors. Mater. Res. Express. 2020, 7, 046401. [Google Scholar] [CrossRef]
- Cho, W.; Lee, S.S.; Chung, T.M.; Kim, C.G.; An, K.S.; Ahn, J.P.; Lee, J.Y.; Lee, W.W.; Hwang, J.H. Nonvolatile memory effects of NiO layers embedded in Al2O3 high-k dielectrics using atomic layer deposition. Electrochem. Solid State Lett. 2010, 13, 6–9. [Google Scholar] [CrossRef]
- Kashir, A.; Jeong, H.W.; Lee, G.H.; Mikheenko, P.; Jeong, Y.H. Dielectric properties of strained nickel oxide thin films. J. Korean Phys. Soc. 2019, 74, 984–988. [Google Scholar] [CrossRef]
- Thacker, Z.; Pinhero, P.J. Terahertz spectroscopy of candidate oxides in MIM diodes for terahertz detection. IEEE Trans. Terahertz. Sci. Technol. 2016, 6, 414–419. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.R.; Monacelli, B.; Weeks, A.R.; Zummo, G.; Boreman, G.D. Design, fabrication, and characterization of antenna-coupled metal-oxide-metal diodes for dual-band detection. Opt. Eng. 2005, 44, 066401. [Google Scholar] [CrossRef]
- Das, P.; Jones, L.A.H.; Gibbon, J.T.; Dhanak, V.R.; Partida-Manzanera, T.; Roberts, J.W.; Potter, R.; Chalker, P.R.; Cho, S.J.; Thayne, I.; et al. Band line-up investigation of atomic layer deposited TiAlO and GaAlO on GaN. ECS J. Solid State Sci. Technol. 2020, 9, 63003. [Google Scholar] [CrossRef]
- Groner, M.D.; Elam, J.W.; Fabreguette, F.H.; George, S.M. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films 2002, 413, 186–197. [Google Scholar] [CrossRef]
- Argall, F.; Jonscher, A.K. Dielectric properties of thin films of aluminium oxide and silicon oxide. Thin Solid Films 1968, 2, 185–210. [Google Scholar] [CrossRef]
- Smith, S.W.; McAuliffe, K.G.; Conley, J.F., Jr. Atomic layer deposited high-k nanolaminate capacitors. Solid State Electron. 2010, 54, 1076–1082. [Google Scholar] [CrossRef]
- Wilk, G.D.; Wallace, R.M.; Anthony, J. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Ye, P.D.; Yang, B.; Ng, K.K.; Bude, J.; Wilk, G.D.; Halder, S.; Hwang, J.C.M. GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric. Appl. Phys. Lett. 2005, 86, 063501. [Google Scholar] [CrossRef] [Green Version]
- Yota, J.; Shen, H.; Ramanathan, R. Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology. J. Vac. Sci. Technol. A 2013, 31, 01A134. [Google Scholar] [CrossRef] [Green Version]
- Rajab, K.Z.; Naftaly, M.; Linfield, E.H.; Nino, J.C.; Arenas, D.; Tanner, D.; Mittra, R.; Lanagan, M. Broadband dielectric characterization of aluminum oxide (Al2O3). J. Microelectron. Electron. Packag. 2008, 5, 2–7. [Google Scholar] [CrossRef]
- Kim, Y.; Yi, M.; Kim, B.G.; Ahn, J. Investigation of THz birefringence measurement and calculation in Al2O3 and LiNbO3. Appl. Opt. 2011, 50, 2906–2910. [Google Scholar] [CrossRef]
- Kischkat, J.; Peters, S.; Gruska, B.; Semtsiv, M.; Chashnikova, M.; Klinkmüller, M.; Fedosenko, O.; Machulik, S.; Aleksandrova, A.; Monastyrskyi, G.; et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 2012, 51, 6789–6798. [Google Scholar] [CrossRef] [PubMed]
- Hutson, A.R. Hall effect studies of doped zinc oxide single crystals. Phys Rev. 1957, 108, 222–230. [Google Scholar] [CrossRef]
- Langton, N.H.; Matthews, D. The dielectric constant of zinc oxide over a range of frequencies. Br. J. Appl. Phys. 1958, 9, 453. [Google Scholar] [CrossRef]
- Querry, M.R. Optical Constants, Report No.AD-A158 623, CR-85034:1–413. 1985. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a158623.pdf (accessed on 3 September 2021).
- Stamate, M.D. Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system. Thin Solid Films 2000, 372, 246–249. [Google Scholar] [CrossRef]
- Rausch, N.; Burte, E.P. Thin TiO2 films prepared by low pressure chemical vapor deposition. J. Electrochem. Soc. 1993, 140, 145–149. [Google Scholar] [CrossRef]
- Shvets, V.A.; Kruchinin, V.N.; Gritsenko, V.A. Dispersion of the refractive index in high-k dielectrics. Opt. Spectrosc. 2017, 123, 728–732. [Google Scholar] [CrossRef]
- Andrés, E.S.; Toledano-Luque, M.; del Prado, A.; Navacerrada, A.; Mártil, I.; González-Díaz, G.; Bohne, W.; Röhrich, J.; Strub, E. Physical properties of high pressure reactively sputtered TiO2. J. Vac. Sci. Technol. A 2005, 23, 1523–1530. [Google Scholar] [CrossRef]
- Takeuchi, M.; Itoh, T.; Nagasaka, H. Dielectric properties of sputtered TiO2 films. Thin Solid Films 1978, 51, 83–88. [Google Scholar] [CrossRef]
- Matsumoto, N.; Hosokura, T.; Kageyama, K.; Takagi, H.; Sakabe, Y.; Hangyo, M. Analysis of dielectric response of TiO2 in terahertz frequency region by general harmonic oscillator model. Jpn. J. Appl. Phys. 2008, 47, 7725–7728. [Google Scholar] [CrossRef]
- Wang, D.D.; Zhou, F.Z.; Cao, J.X.; Li, L.B.; Li, G.L. Impact of Cu2O doping on high dielectric properties of CuO ceramics. Current Appl. Phys. 2017, 17, 781–784. [Google Scholar] [CrossRef]
- Parretta, A.; Jayaraj, M.K.; Di Nocera, A.; Loreti, S.; Quercia, L.; Agati, A. Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering. Phys. Status Solidi Appl. Res. 1996, 155, 399–404. [Google Scholar] [CrossRef]
- Bright, T.J.; Watjen, J.I.; Zhang, Z.M.; Muratore, C.; Voevodin, A.A.; Koukis, D.I.; Tanner, D.B.; Arenas, D.J. Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films. J. Appl. Phys. 2013, 114, 083515. [Google Scholar] [CrossRef]
- Dube, D.C.; Agrawal, D.; Agrawal, S.; Roy, R. High temperature dielectric study of Cr2O3 in microwave region. Appl. Phys. Lett. 2007, 90, 124105. [Google Scholar] [CrossRef]
- Fang, P.H.; Brower, W.S. Dielectric constant of Cr2O3 crystals. Phys. Rev. 1963, 129, 1561. [Google Scholar] [CrossRef]
- Wheeler, V.D.; Shahin, D.I.; Tadjer, M.J.; Eddy, C.R., Jr. Band alignments of atomic layer deposited ZrO2 and HfO2 high-k dielectrics with (-201) β-Ga2O3. ECS J. Solid State Sci. Technol. 2016, 6, Q3052. [Google Scholar] [CrossRef]
- Conley, J.F.; Alimardani, N. Impact of electrode roughness on metal-insulator-metal (MIM) diodes and step tunneling in nanolaminate tunnel barrier metal-insulator-insulator-metal (MIIM) diodes. In Rectenna Solar Cells; Springer: Berlin/Heidelberg, Germany, 2013; pp. 111–134. [Google Scholar]
- Thomas, B.; Jayalekshmi, S. Dielectric properties of vanadium pentoxide thin films in the audio frequency range. J. Non Cryst. Solids 1989, 113, 65–72. [Google Scholar] [CrossRef]
- Belosludtsev, A.; Yakimov, Y.; Mroczyński, R.; Stanionytė, S.; Skapas, M.; Buinovskis, D.; Kyžas, N. Effect of annealing on optical, mechanical, electrical properties and structure of scandium oxide films. Phys. Status Solidi 2019, 216, 1900122. [Google Scholar] [CrossRef]
- Kim, J.; Mehandru, R.; Luo, B.; Ren, F.; Gila, B.P.; Onstine, A.H.; Abernathy, C.R.; Pearton, S.J.; Irokawa, Y. Inversion behavior in Sc2O3/GaN gated diodes. Appl. Phys. Lett. 2002, 81, 373–375. [Google Scholar] [CrossRef]
- Yakovkina, L.V.; Smirnova, T.P.; Borisov, V.O.; Kichai, V.N.; Kaichev, V.V. Synthesis and properties of dielectric (HfO2)1−x(Sc2O3)x films. Inorg. Mater. 2013, 49, 172–178. [Google Scholar] [CrossRef]
- Bareiß, M.; Kälblein, D.; Jirauschek, C.; Exner, A.; Pavlichenko, I.; Lotsch, B.; Zschieschang, U.; Klauk, H.; Scarpa, G.; Fabel, B.; et al. Ultra-thin titanium oxide. Appl. Phys. Lett. 2012, 101, 083113. [Google Scholar] [CrossRef] [Green Version]
- Hannachi, L.; Bouarissa, N. Band parameters for cadmium and zinc chalcogenide compounds. Phys. B Condens. Matter. 2009, 404, 3650–3654. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, V.; Bougher, T.L.; Cola, B.A. A carbon nanotube optical rectenna. Nat. Nanotechnol. 2015, 10, 1027–1032. [Google Scholar] [CrossRef]
- Anderson, E.C.; Cola, B.A. Photon-assisted tunneling in carbon nanotube optical rectennas: Characterization and modeling. ACS Appl. Electron. Mater. 2019, 1, 692–700. [Google Scholar] [CrossRef]
- Wang, F.; Melosh, N.A. Plasmonic energy collection through hot carrier extraction. Nano Lett. 2011, 11, 5426–5430. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Fukushima, S.; Okuda, S.; Shimatani, M. Graphene nanoribbon photogating for graphene-based infrared photodetectors. In Infrared Technology and Applications XLVII; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; p. 117411H. [Google Scholar]
Metal | Work Function (eV) | Oxide | Electron Affinity, χ (eV) | Band Gap (eV) |
---|---|---|---|---|
Ni | 4.9 [11,12], 4.99 [13], 5.04–5.35 [14] | NiO | 1.46 [32], 3.0 [33] | 3.4 [45], 3.8 [33], 4.0 [46] |
Co | 4.00 [11], 4.8 [13], 5.00 [15] | Al2O3 | 1.57 [17], 2.58 [34], 3.50 [9] | 5.95 [45], 6.4 [38,47] |
Ag | 4.26 [16,17], 4.33 [12], 4.7 [11] | ZnO | 4.3–4.5 [35], 4.6 [33] | 3.2 [48], 3.38 [35], 3.4 [33] |
Cu | 4.5 [11,12], 4.63 [13], 4.65 [16] | TiO2 | 3.9 [36], 4.0 [33] | 3.05 [36], 3.2 [33], 3.3 [49] |
Au | 4.8 [11], 5.1 [16], 5.28 [12] | CuO | 4.07 [37] | 1.2–1.8 [50] |
Al | 4.2 [11,18], 4.28 [16,17] | Ta2O5 | 3.2 [36], 3.3 [33], 3.75 [35] | 4.17 [35], 4.4 [36,38], 4.45 [51] |
W | 4.5 [11,19], 4.8 [13] | Nb2O5 | 3.72 [17], 4.23 [38] | 3.71 [51], 3.8 [38] |
Mo | 4.2 [11], 4.4 [13], 4.6 [16] | Cr2O3 | 3.16–4.05 [39] | 3.2 [52], 3.24 [53] |
Zn | 4.3 [11,16] | Co3O4 | 3.05–4.05 [40] | 2.10 [54] |
Pd | 5.0 [11], 5.12 [12] | SiO2 | 0.9 [33,36] | 8.8 [38], 9.0 [33] |
Pt | 5.3 [11], 5.65 [16] | HfO2 | 2.2 [33], 2.25 [41] | 5.6 [38], 6.0 [36] |
Cr | 4.0 [13], 4.4 [11], 4.5 [16] | V2O5 | 7.1 [42] | 2.36 [55] |
Ta | 4.1 [11,13], 4.25 [16] | Sc2O3 | 2.06 [43], 1.98–2.5 [44] | 5.7–6.0 [43] |
Nb | 4.1 [17], 4.3 [16] | - | - | - |
V | 4.44 [20] | - | - | - |
Ti | 3.7 [13], 4.1 [11], 4.33 [16] | - | - | - |
Oxides | Metals | β0 (A/W) | βMAX (A/W) | R0 (Ω) | ηasym | Area (μm2) | Thickness (nm) | Deposition Technique |
---|---|---|---|---|---|---|---|---|
NiO | Ni/Ni [27] | - | 0.8 | 200 | - | 0.056 | 3.3 | Sputtering |
Ni/Ni [28] | - | - | 100 | - | 0.012 | ~3.5 | Sputtering | |
Ni/Ni [59] | - | 0.825 | 180 | - | 0.075 | 3.5 | Sputtering | |
Ni/Ni [60] | - | 0.5 | ~4.6 k | - | 0.01192 | 2.5 | Plasma oxidation | |
Ni/Ni [61] | −0.41 | −2.65 | 42.4 M | - | 0.018 | <4 | Plasma oxidation | |
Ni/Au [62] | 2.8 | 4.56 | - | - | 0.64 | 2.2 | Plasma oxidation | |
Ni/Au [63] | - | 17.5 | - | 22 at 0.6 V | 4.4 × 10−5 | 2.6–4.2 | Langmuir-Blodgett | |
Ni/Ag [64] | 2.9 | 4.25 | - | 4.7 at 1.0 V | 3.1 × 10−4 | 6 | Thermal oxidation | |
Ni/Pt [65] | −1.5 | −6.5 | - | - | 0.075 | 1–2 | Native oxidation | |
Ni/CrAu [66] | 0.5 | 2.5 | 500 k | - | 1.45 | ~3 | Plasma oxidation | |
Ni/CrAu [67] | - | - | - | 6 at 0.2 V | 100 | 5.5 | Plasma oxidation | |
Ni/Cu [68] | - | 3.65 | 1.2 M | - | 0.008 | 12 | Thermal oxidation | |
Ni/Mo [69] | - | - | 6 k | - | - | 2.4 | Plasma oxidation | |
Al2O3 | Al/Al [65] | 0.05 | −0.7 | - | - | - | 1–2 | Controlled oxidation |
Al/Ni [65] | 0.25 | 0.5 | - | - | - | 1–2 | Controlled oxidation | |
Al/Ti [65] | 0.3 | 1.0 | - | - | - | 1–2 | Controlled oxidation | |
Al/Pt [65] | 0.5 | 0.65 | - | - | - | 1–2 | Controlled oxidation | |
Al/Pt [70] | 0.5 | 2.25 | - | - | 0.0025 | 2–2.5 | Controlled oxidation | |
Al/Pt [71] | −0.64 | 2.4 | 312 M | - | 0.004 | 1–2.5 | O2 exposure | |
Al/Pt [72] | - | - | 125 | - | - | 1–2 | O2 exposure | |
Al/Ag [73] | 9.0 | 9.0 | 27 k | 1.2 at 0.6 V | 1,760,000 | - | Plasma oxidation | |
Au/Mo [74] | 9.4 | 9.4 | 113 k | - | 1.0 | ~6 | Sputtering | |
Au/Au [75] | 0.1 | 2.3 | 83 M | 1.3 at 1.2 V | 10,000 | 3 | ALD | |
Au/Ti [9] | 0.44 | 1.25 | 98 k | - | 0.04 * | 1.5 | ALD | |
Au/Ti [75] | −0.6 | 5 | 35 M | 1.7 at 1.5 V | 10,000 | 3 | ALD | |
AlOx | Al/Gr [29] | - | - | 600 | 2500 at 1 V | - | ~3 | Thermal oxidation |
Al/Pt [77] | ~0.15 | −1.2 | ~220 k | - | 0.0056 * | ~2 nm | O2 exposure | |
TiOx | Ti/Pt [78] | 2.75 | 7.5 | ~150 k | - | - | - | Plasma oxidation |
Gr/Ti [79] | - | - | - | 9000 at 1 V | 12 | - | Thermal oxidation | |
NiOx | Ni/Cr [80] | - | 5.5 | 157 M | 400 | 7 | Sputtering | |
ZnO | Ti/Pt [81] | 0.125 | - | 1.2 k | - | 90,000 | 4 | ALD |
AuCr/Ni [82] | - | 16 | - | 12 at 0.78 V | 100 | ~4 | Langmuir-Blodgett | |
V2O5 | V/Al [20] | - | 4.26 | 20 k | - | 4.0 | 3 | Sputtering |
V/V [83] | - | −1.18 | 13.4 k | - | 4.0 | 1.45 | Sputtering | |
SiO2 | PolySi/Au [84] | ~1.25 | −7.25 | 120 M | 5 at 0.4 V | 0.35 | 1.38 | Boiling water oxidation |
PolySi/PolySi [85] | ~1.5 | −15.5 | - | - | 6 × 10−5 | - | Boiling water oxidation | |
Nb2O5 | Nb/Pt [86] | - | 10 | - | 1500 at 0.5 V | 45,239 * | 15 | Anodic oxidation |
Nb/Pt [87] | - | 8.45 | - | 7700 at 0.5 V | 6400 * | 15 | Anodic oxidation | |
CuO | Au/Cu [8] | 2.0 | 3.0 | 500 | - | 0.004489 | 0.7 | ALD |
TiO2 | Ti/Pd [69] | - | - | 100 k | - | - | 3 | Plasma oxidation |
Cr2O3 | Au/Cr [88] | - | 4.0 | - | - | - | 5 | Electron beam evaporation |
HfO2 | Au/Pt [89] | - | 3.29 | 405 | - | 4.0 | 6 | ALD |
Sc2O3 | Al/Al [90] | 1.0 | 2.7 | 960 k | 1.3 at 1.2 V | 10,000 | 3 | Sputtering |
Oxides | Metals | β0 (A/W) | βMAX (A/W) | R0 (Ω) | ηasym | Area (µm2) | Thickness (nm) | Deposition Technique |
---|---|---|---|---|---|---|---|---|
Al2O3/HfO2 | ZCAN/Al [18] | - | - | - | >10 at 0.8 V | 8 × 105 | 2.5/1 | ALD |
Cr/Cr [58] | - | ~2.5 | - | ~10 at 3 V | 2 × 105 * | 2/2 | ALD | |
Al2O3/Ta2O5 | ZCAN/Al [30] | - | - | - | 10 at 0.45 V 187 at 1.2 V | 8 × 105 | 2.5/2.5 | ALD |
Al/Al [51] | - | 6.0 | - | 18 at 0.35 V | 1 × 104 | 1/4 | Sputtering/ALD | |
Cr/Al [96] | - | - | >107 M | ~8 at ~1 V | 1 × 104 | 1/4 | ALD | |
Al2O3/Nb2O5 | Ag/Nb [17] | - | 8.0 | - | 35.2 at 0.06 V | 1 × 104 | 1/4 | Sputtering |
Al/Al [51] | - | 9.0 | - | 7.6 at ~0 V | 1 × 104 | 1/4 | Sputtering/ALD | |
NiO/AlOx | Ni/CrAu [45] | 0.31 | - | 1.75 k | - | 0.025 | 2/1.1 | Sputtering |
Ni/CrAu [97] | 0.5 | - | 13 k | - | 0.035 | 4/1 | Sputtering | |
NiO/TiO2 | Ni/Cr [14] | ~1.0 | - | 56 k | - | 0.071 | - | Sputtering/ O2 ambient |
NiO/Nb2O5 | Ni/CrAu [98] | 0.46 | ~3.0 | 380 | ~1.15 at 0.2 V | 0.1552 * | 3/2 | Sputtering/ O2 ambient |
NiOx/ZnO | Ni/Cr [80] | - | 8.0 | 234 M | 16 at 0.5 V | 400 * | 7/7 | Sputtering |
ZnO/TiO2 | Al/Ti [99] | 1.9 | 10.6 | 5.9 k | - | 72.27 * | 0.5/1.65 | ALD |
TiO2/Co3O4 | Ti/Co [15] | 2.2 | 4.4 | 18 k | 1.2 at 0.1 V | 0.071 | 2.7/2.5 | Plasma oxidation/sputtering |
TiO2/TiO1.4 | Pt/Ti [100] | - | - | - | 7.26 at 0.45 V | 900 | 3/2 | Annealing/ALD |
NTiOx/NAlOx | Pt/Al [101] | 1.7 | 2.7 | 36 | 1 at 0.5 V | 100 | 7/3 | PA-ALD |
Ta2O5/Nb2O5/Al2O3 | Al/Al [56] | - | 5.1 | - | 12 at 0.1 V | 1 × 104 | 2/2/1 | ALD |
Ta2O5/Nb2O5/Al2O3 | Al/Al [75] | 1.2 | 4.3 | 2.8 M | 4.3 at 1.6 V | 1 × 104 | 1/3/1 | ALD |
Nb2O5/Ta2O5/Al2O3 | Al/Al [75] | −3.7 | 5.5 | 3.6 G | 117 at 1.6 V 6 at 0.1 V | 1 × 104 | 1/3/1 | ALD |
Oxide | Permittivity (εr) | Dynamic Permittivity (ε∞) | |
---|---|---|---|
1–3 THz | 28.3 THz | ||
NiO | 7.9–16.7 [105], 11.9 [106,107] | 9.6 [108] | 3.24 [109] |
Al2O3 | 7 [110], 7.6 [111], 8.3 [112], 8.9 [113], 9 [114], 10 [17,51,115,116] | ~9 [117], 11.5 [118] | 0.8 [45,119] |
ZnO | 8.5 [120], 9.4–10.4 [121] | 7.0 [108] | 2.4 [122] |
TiO2 | 60 [123], 70 [124], 80 [114,125], 88–102 [126], 100 [127] | ~100 [128] | 1.4 [119] |
CuO | 103–105 [129] | - | 2.4 [8,130] |
Ta2O5 | 20 [91], 23.9 [113], 25 [126] | ~33 [108], 22.7 [131] | - |
Nb2O5 | 25 [17,51,91] | ~22 [108] | - |
Cr2O3 | 10.3 [132], 11.8–13.3 [133] | - | - |
SiO2 | 3.9 [114] | - | 4.7 [119] |
HfO2 | 14 [134], 18 [135], 25 [114] | - | - |
V2O5 | 11.5–22.3 [136] | ||
Sc2O3 | 8.5–9.3 [137], 14 [138,139] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrovic, I.Z.; Almalki, S.; Tekin, S.B.; Sedghi, N.; Chalker, P.R.; Hall, S. Oxides for Rectenna Technology. Materials 2021, 14, 5218. https://doi.org/10.3390/ma14185218
Mitrovic IZ, Almalki S, Tekin SB, Sedghi N, Chalker PR, Hall S. Oxides for Rectenna Technology. Materials. 2021; 14(18):5218. https://doi.org/10.3390/ma14185218
Chicago/Turabian StyleMitrovic, Ivona Z., Saeed Almalki, Serdar B. Tekin, Naser Sedghi, Paul R. Chalker, and Stephen Hall. 2021. "Oxides for Rectenna Technology" Materials 14, no. 18: 5218. https://doi.org/10.3390/ma14185218
APA StyleMitrovic, I. Z., Almalki, S., Tekin, S. B., Sedghi, N., Chalker, P. R., & Hall, S. (2021). Oxides for Rectenna Technology. Materials, 14(18), 5218. https://doi.org/10.3390/ma14185218