Effects of the Primary NbC Elimination on the SSCC Resistance of a HSLA Steel for Oil Country Tubular Goods
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Simulated Solidification Process Using Thermo-Calc
3.2. Microstructural Characterization
3.2.1. Primary NbC Carbides and Prior Austenite Grain Size
3.2.2. Various Carbides Formed during Tempering
3.2.3. EBSD Characterization
3.2.4. XRD Characterization
3.3. Mechanical Properties and SCC Resistance
4. Discussion
5. Conclusions
- The primary NbC carbides were removed by ESR, and hence the yield strength slightly increased without deteriorating the SSCC resistance.
- The elimination of primary NbC carbides increased the dislocation density and the proportion of high angle boundaries (HABs), which was not good to the SSCC resistance.
- The elimination of primary NbC carbides promoted a more uniform nanosized secondary NbC carbides formation during tempering, providing many irreversible hydrogen traps.
- The opposite effects on SSCC resistance resulted from the increase of dislocation density and the proportion of HABs as well as the formation of more nanosized secondary NbC carbides were assumed to be offset, and thus the SSCC resistance was not greatly improved using ESR.
- In view to the experimental results and the practical cost of performing ESR, this work, as a guidance for industrial application, suggested that it was not necessary to use ESR to produce HSLA steels for OCTGs as well as pipelines.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hara, T.; Semba, H.; Amaya, H. Pipe and Tube Steels for Oil and Gas Industry and Thermal Power Plant. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Guedes, D.; Barrez, S.; Thébault, F.; Schwittek, P.; Hartmaier, A.; Creux, J.; Feaugas, X. Modeling and Experimental Insights of Sulfide Stress Cracking Corrosion Mechanism; CORROSION 2017; OnePetro: Houston, TX, USA, 2017. [Google Scholar]
- Li, X.; Song, J.; Gan, K.; Xia, D.-H.; Gao, Z.; Liu, C.; Liu, Y. Identifying sulfide stress cracking stages on a HSLA pipeline steel in H2S environment by electrochemical noise. J. Electroanal. Chem. 2020, 876, 114480. [Google Scholar] [CrossRef]
- Askari, M.; Aliofkhazraei, M.; Afroukhteh, S. A comprehensive review on internal corrosion and cracking of oil and gas pipelines. J. Nat. Gas Sci. Eng. 2019, 71, 102971. [Google Scholar] [CrossRef]
- Ghosh, G.; Rostron, P.; Garg, R.; Panday, A. Hydrogen induced cracking of pipeline and pressure vessel steels: A review. Eng. Fract. Mech. 2018, 199, 609–618. [Google Scholar] [CrossRef]
- Ohaeri, E.; Eduok, U.; Szpunar, J. Hydrogen related degradation in pipeline steel: A review. Int. J. Hydrogen Energy 2018, 43, 14584–14617. [Google Scholar] [CrossRef]
- Bertoncello, J.C.B.; Simoni, L.; Tagliari, M.R.; Scheid, A.; Paes, M.T.P.; Kwietniewski, C.E.F. Effects of thermal spray aluminium coating on SSC and HIC resistance of high strength steel in a sour environment. Surf. Coat. Technol. 2020, 399, 126156. [Google Scholar] [CrossRef]
- Turk, A.; Joshi, G.R.; Gintalas, M.; Callisti, M.; Rivera-Díaz-del-Castillo, P.E.J.; Galindo-Nava, E.I. Quantification of hydrogen trapping in multiphase steels: Part I—Point traps in martensite. Acta Mater. 2020, 194, 118–133. [Google Scholar] [CrossRef]
- Hilditch, T.B.; Lee, S.B.; Speer, J.G.; Matlock, D.K. Response to Hydrogen Charging in High Strength Automotive Sheet Steel Products; SAE International: Detroit, Michigen, USA, 2003. [Google Scholar]
- Loidl, M.; Kolk, O. Hydrogen Embrittlement in HSSs Limits Use in Lightweight Body in White Design-High strength steels (HSSs) can fail due to hydrogen embrittlement under certain circumstances, which hinders their use in the body in white design. Adv. Mater. Process. 2011, 169, 22. [Google Scholar]
- Zhang, S.; Wan, J.; Zhao, Q.; Liu, J.; Huang, F.; Huang, Y.; Li, X. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros. Sci. 2020, 164, 108345. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, E.; Wan, J.; Liu, J.; Huang, Y.; Li, X. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel. Corros. Sci. 2018, 139, 83–96. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Shi, G.; Meng, K.; Wang, Q.; Zhang, F. Effect of niobium on sulfide stress cracking behavior of tempered martensitic steel. Corros. Sci. 2020, 165, 108387. [Google Scholar] [CrossRef]
- Wang, X.D.; Xu, W.Z.; Guo, Z.H.; Wang, L.; Rong, Y.H. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching–partitioning–tempering process. Mater. Sci. Eng. A 2010, 527, 3373–3378. [Google Scholar] [CrossRef]
- Li, X.; Cai, Z.; Hu, M.; Li, K.; Hou, M.; Pan, J. Effect of NbC precipitation on toughness of X12CrMoWNbVN10-1-1 martensitic heat resistant steel for steam turbine blade. J. Mater. Res. Technol. 2021, 11, 2092–2105. [Google Scholar] [CrossRef]
- Wei, F.-G.; Hara, T.; Tsuzaki, K. Nano-Preciptates Design with Hydrogen Trapping Character in High Strength Steel; Weng, Y., Dong, H., Gan, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 87–92. [Google Scholar]
- Krechkovska, H.; Student, O.; Lesiuk, G.; Correia, J. Features of the microstructural and mechanical degradation of long term operated mild steel. Int. J. Struct. Integr. 2018, 9, 296–306. [Google Scholar] [CrossRef]
- Halfa, H. Characterization of Electroslag Remelted Super Hard High Speed Tool Steel Containing Niobium. Steel Res. Int. 2013, 84, 495–510. [Google Scholar] [CrossRef]
- Prince, J.C.; Maroño, R.; León, F. Thermomechanical analysis of a piercing mandrel for the production of seamless steel tubes. J. Process Mech. Eng. 2003, 217, 337–344. [Google Scholar] [CrossRef]
- Ribárik, G.; Gubicza, J.; Ungár, T. Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction. Mater. Sci. Eng. A 2004, 387–389, 343–347. [Google Scholar] [CrossRef]
- Ribarik, G.; Ungar, T.; Gubicza, J. MWP-fit: A program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions. J. Appl. Crystallogr. 2001, 34, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Zhang, S.; Shi, X.; Wang, W.; Yan, W.; Yang, K. Effect of NbC and VC carbides on microstructure and strength of high-strength low-alloyed steels for oil country tubular goods. Mater. Sci. Eng. A 2021, 824, 141845. [Google Scholar] [CrossRef]
- ASTM E975-03. Standard Practice for X-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation; ASTM International: West Conshohocken, PA, USA, 2003; Available online: www.astm.org (accessed on 1 September 2021).
- Liu, M.; Wang, C.H.; Dai, Y.C.; Li, X.; Cao, G.H.; Russell, A.M.; Liu, Y.H.; Dong, X.M.; Zhang, Z.H. Effect of quenching and tempering process on sulfide stress cracking susceptibility in API-5CT-C110 casing steel. Mater. Sci. Eng. A 2017, 688, 378–387. [Google Scholar] [CrossRef]
- Wang, X.T.; Liu, M.; Zhou, G.Y.; Jiang, H.; Li, X.; Luo, M.; Liu, Y.H.; Zhang, Z.H.; Cao, G.H. Effects of chromium and tungsten on sulfide stress cracking in high strength low alloy 125 ksi grade casing steel. Corros. Sci. 2019, 160, 108163. [Google Scholar] [CrossRef]
- Morito, S.; Tanaka, H.; Konishi, R.; Furuhara, T.; Maki, T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003, 51, 1789–1799. [Google Scholar] [CrossRef]
- Pero-Sanz Elorz, J.A.; Quintana Hernández, M.J.; Verdeja González, L.F. Chapter 8—Solid-State Transformations in the Fe-C System. In Solidification and Solid-State Transformations of Metals and Alloys; Pero-Sanz Elorz, J.A., Quintana Hernández, M.J., Verdeja González, L.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 255–324. [Google Scholar]
- Ishida, K. Calculation of the effect of alloying elements on the Ms temperature in steels. J. Alloys Compd. 1995, 220, 126–131. [Google Scholar] [CrossRef]
- Morito, S.; Oh-ishi, K.; Hono, K.; Ohba, T. Carbon Enrichment in Retained Austenite Films in Low Carbon Lath Martensite Steel. ISIJ Int. 2011, 51, 1200–1202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhan, D.; Qi, X.; Jiang, Z. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel. Mater. Charact. 2018, 144, 393–399. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Yang, Z. Austenite layer and precipitation in high Co–Ni maraging steel. Micron 2014, 67, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, F.; Guo, Z.; Rong, Y.; Chen, N. Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure. Mater. Sci. Eng. A 2016, 665, 76–85. [Google Scholar] [CrossRef]
- Qilong, Y. Secondary Phase in the Steel; Metallurgical Industry Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Wu, H.; Ju, B.; Tang, D.; Hu, R.; Guo, A.; Kang, Q.; Wang, D. Effect of Nb addition on the microstructure and mechanical properties of an 1800MPa ultrahigh strength steel. Mater. Sci. Eng. A 2015, 622, 61–66. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Zhang, C.; Wang, Q.; Zhang, F. Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel. Mater. Res. Express 2018, 5, 046501. [Google Scholar] [CrossRef]
- Taylor, G.I. Plastic strain in metals. J. Inst. Met. 1938, 62, 307–324. [Google Scholar]
- Tu, X.; Shi, X.; Shan, Y.; Yan, W.; Shi, Q.; Li, Y.; Li, C.; Yang, K. Tensile deformation damage behavior of a high deformability pipeline steel with a ferrite and bainite microstructure. Mater. Sci. Eng. A 2020, 793, 139889. [Google Scholar] [CrossRef]
- Ungár, T.; Harjo, S.; Kawasaki, T.; Tomota, Y.; Ribárik, G.; Shi, Z. Composite Behavior of Lath Martensite Steels Induced by Plastic Strain, a New Paradigm for the Elastic-Plastic Response of Martensitic Steels. Metall. Mater. Trans. A 2017, 48, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Ashby, M.F.; Kelly, A. Strengthening Methods in Crystals; Elsevier: Amsterdam, The Netherlands, 1971; p. 137. [Google Scholar]
- Huang, M.; Rivera-Díaz-del-Castillo, P.E.J.; Bouaziz, O.; van der Zwaag, S. Modelling strength and ductility of ultrafine grained BCC and FCC alloys using irreversible thermodynamics. Mater. Sci. Technol. 2009, 25, 833–839. [Google Scholar] [CrossRef]
- Ghosh, G.; Olson, G.B. The isotropic shear modulus of multicomponent Fe-base solid solutions. Acta Mater. 2002, 50, 2655–2675. [Google Scholar] [CrossRef]
- Chen, W.; Gao, P.; Wang, S.; Zhao, X.; Zhao, Z. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel. Mater. Sci. Eng. A 2020, 797, 140115. [Google Scholar] [CrossRef]
- Shamsujjoha, M. Evolution of microstructures, dislocation density and arrangement during deformation of low carbon lath martensitic steels. Mater. Sci. Eng. A 2020, 776, 139039. [Google Scholar] [CrossRef]
- Garet, M.; Brass, A.M.; Haut, C.; Guttierez-Solana, F. Hydrogen trapping on non metallic inclusions in cr-mo low alloy steels. Corros. Sci. 1998, 40, 1073–1086. [Google Scholar] [CrossRef]
- Ohnuma, M.; Suzuki, J.-i.; Wei, F.-G.; Tsuzaki, K. Direct observation of hydrogen trapped by NbC in steel using small-angle neutron scattering. Scr. Mater. 2008, 58, 142–145. [Google Scholar] [CrossRef]
- Shi, R.; Ma, Y.; Wang, Z.; Gao, L.; Yang, X.-S.; Qiao, L.; Pang, X. Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces. Acta Mater. 2020, 200, 686–698. [Google Scholar] [CrossRef]
- Momotani, Y.; Shibata, A.; Yonemura, T.; Bai, Y.; Tsuji, N. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel. Scr. Mater. 2020, 178, 318–323. [Google Scholar] [CrossRef]
Steels | C | Nb | V | Mo | Mn | Cr | Si | Al | Ti | N | P | S |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | 0.26 | 0.029 | 0.08 | 0.78 | 0.43 | 0.55 | 0.22 | 0.031 | 0.003 | 0.007 | 0.010 | 0.0023 |
ESR | 0.25 | 0.026 | 0.08 | 0.78 | 0.42 | 0.54 | 0.25 | 0.036 | 0.004 | 0.007 | 0.009 | 0.0007 |
Steels | Mechanical Properties | SSCC Resistance | ||||
---|---|---|---|---|---|---|
YS (MPa) | TS (MPa) | A (%) | KV2 (J) | % SMYS and Applied Stress | Failure Time (h) | |
CC | 868 ± 9 | 918 ± 10 | 19.5 ± 1.4 | 194 ± 3 | 80%, 606 MPa | 120 ± 5 |
85%, 644 MPa | 123 ± 3 | |||||
ESR | 905 ± 7 | 957 ± 8 | 18.8 ± 1.5 | 171 ± 1 | 80%, 606 MPa | 120 ± 4 |
85%, 644 MPa | 123 ± 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Zhang, S.; Shi, X.; Wang, W.; Yan, W.; Tian, Y.; Zhao, M.; Yang, K. Effects of the Primary NbC Elimination on the SSCC Resistance of a HSLA Steel for Oil Country Tubular Goods. Materials 2021, 14, 5301. https://doi.org/10.3390/ma14185301
Zeng T, Zhang S, Shi X, Wang W, Yan W, Tian Y, Zhao M, Yang K. Effects of the Primary NbC Elimination on the SSCC Resistance of a HSLA Steel for Oil Country Tubular Goods. Materials. 2021; 14(18):5301. https://doi.org/10.3390/ma14185301
Chicago/Turabian StyleZeng, Tianyi, Shuzhan Zhang, Xianbo Shi, Wei Wang, Wei Yan, Yan Tian, Mingchun Zhao, and Ke Yang. 2021. "Effects of the Primary NbC Elimination on the SSCC Resistance of a HSLA Steel for Oil Country Tubular Goods" Materials 14, no. 18: 5301. https://doi.org/10.3390/ma14185301
APA StyleZeng, T., Zhang, S., Shi, X., Wang, W., Yan, W., Tian, Y., Zhao, M., & Yang, K. (2021). Effects of the Primary NbC Elimination on the SSCC Resistance of a HSLA Steel for Oil Country Tubular Goods. Materials, 14(18), 5301. https://doi.org/10.3390/ma14185301