Surface Topography Analysis of Mg-Based Composites with Different Nanoparticle Contents Disintegrated Using Abrasive Water Jet
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Morphology
3.2. Surface Roughness
3.3. Mechanical Properties
4. Discussion
5. Conclusions
- The regular surface topography of the machined surface has been generated from AWJ machining at 20 mm/min and 250 mm/min traverse speeds for both material A (0.66%) and material B (1.11%), whereas at 500 mm/min traverse speed, the surface finish becomes rougher in material A compared to material B due to the lower resistance of the abrasive particles.
- Based on analysis of three-dimensional profiles it can be concluded that the depth of valleys and the size of depressions enhanced with traverse speed (20 mm/min–500 mm/min) whereas in material B at 20 mm/min traverse speed, no remarkable depressions were seen.
- The surfaces examined at three different regions with respect to jet inlet can be explained by the density of the striations in the AWJ machined surfaces, which increases from jet inlet to jet exit regions. The reason behind this fact is unsteady jet penetration process, non-uniformity of abrasive distribution in the jet and material resistance at the exit.
- The values of selected roughness parameters (Ra, Rp, Rv) increases from lower (20 mm/min) to higher traverse speed (500 mm/min) in the case of both material types. However, there is a large difference in roughness values for material A and material B at 500 mm/min speed. To some extent, better surface quality of material B can be achieved at higher speeds.
- The results from nanoindentation testing convey the softening of the AWJ machined surface up to the depth of 20–25 µm in the case of material A, whereas no significant variations in hardness, modulus values or softening phenomena were observed in material B.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perec, A. Experimental research into alternative abrasive material for the abrasive water-jet cutting of titanium. Int. J. Adv. Manuf. Technol. 2018, 97, 1529–1540. [Google Scholar] [CrossRef]
- Folkes, J. Waterjet—An innovative tool for manufacturing. J. Mater. Process. Technol. 2009, 209, 6181–6189. [Google Scholar] [CrossRef]
- Cárach, J.; Hloch, S.; Petrů, J.; Nag, A.; Gombár, M.; Hromasová, M. Hydroabrasive disintegration of rotating Monel K-500 workpiece. Int. J. Adv. Manuf. Technol. 2018, 96, 981–1001. [Google Scholar] [CrossRef]
- Nag, A.; Srivastava, A.K.; Dixit, A.R.; Chattopadhyaya, S.; Mandal, A.; Klichová, D.; Hlaváček, P.; Zeleňák, M.; Hloch, S. Influence of Abrasive water jet turning parameters on variation of diameter of hybrid metal matrix composite. In Applications of Fluid Dynamics; Springer: New York, NY, USA, 2018; pp. 495–504. [Google Scholar]
- Nag, A.; Ščučka, J.; Hlavacek, P.; Klichová, D.; Srivastava, A.K.; Hloch, S.; Dixit, A.R.; Foldyna, J.; Zelenak, M. Hybrid aluminium matrix composite AWJ turning using olivine and Barton garnet. Int. J. Adv. Manuf. Technol. 2017, 94, 2293–2300. [Google Scholar] [CrossRef]
- Tiwari, T.; Sourabh, S.; Nag, A.; Dixit, A.R.; Mandal, A.; Das, A.K.; Mandal, N.; Srivastava, A.K. Parametric investigation on abrasive waterjet machining of alumina ceramic using response surface methodology. IOP Conf. Ser. Mater. Sci. Eng. 2018, 377, 012005. [Google Scholar] [CrossRef] [Green Version]
- Hlavacek, P.; Hloch, S.; Nag, A.; Petru, J.; Muller, M.; Hromasová, M.; Srníček, P. Effect of rotation direction, traverse speed, and abrasive type during the hydroabrasive disintegration of a rotating Ti6Al4V workpiece. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 235, 1848–1860. [Google Scholar] [CrossRef]
- Hloch, S.; Hlaváček, J.; Vasilko, K.; Cárach, J.; Samardžić, I.; Kozak, D.; Hlavatý, I.; Ščučka, J.J.; Klich, J.; Klichová, D. Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija 2014, 53, 537–540. [Google Scholar]
- Cárach, J.; Hloch, S.; Hlaváček, P.; Ščučka, J.; Martinec, P.; Petrů, J.; Zlámal, T.; Zeleňák, M.; Monka, P.; Lehocká, D.; et al. Tangential turning of Incoloy alloy 925 using abrasive water jet technology. Int. J. Adv. Manuf. Technol. 2015, 82, 1747–1752. [Google Scholar] [CrossRef]
- Sharma, V.; Chattopadhyaya, S.; Hloch, S. Multi response optimization of process parameters based on Taguchi—Fuzzy model for coal cutting by water jet technology. Int. J. Adv. Manuf. Technol. 2011, 56, 1019–1025. [Google Scholar] [CrossRef]
- Raj, P.; Hloch, S.; Tripathi, R.; Srivastava, M.; Nag, A.; Klichová, D.; Klich, J.; Hromasová, M.; Muller, M.; Miloslav, L.; et al. Investigation of sandstone erosion by continuous and pulsed water jets. J. Manuf. Process. 2019, 42, 121–130. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Papini, M. Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 2014, 219, 143–154. [Google Scholar] [CrossRef]
- Zhong, Z.W.; Han, Z.Z. Turning of glass with abrasive waterjet. Mater. Manuf. Process. 2002, 17, 339–349. [Google Scholar] [CrossRef]
- Carach, J.; Lehocka, D.; Legutko, S.; Hloch, S.; Chattopadhyaya, S.; Dixit, A.R. Surface roughness of graphite and aluminium alloy after hydro-abrasive machining. In Lecture Notes in Mechanical Engineering; Springer: New York, NY, USA, 2017; pp. 805–813. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Nag, A.; Dixit, A.R.; Tiwari, S.; Scucka, J.; Zelenak, M.; Hloch, S.; Hlaváček, P. Surface integrity in tangential turning of hybrid MMC A359/B 4 C/Al 2 O 3 by abrasive waterjet. J. Manuf. Process. 2017, 28, 11–20. [Google Scholar] [CrossRef]
- Montesano, J.; Bougherara, H.; Fawaz, Z. Influence of drilling and abrasive water jet induced damage on the performance of carbon fabric/epoxy plates with holes. Compos. Struct. 2017, 163, 257–266. [Google Scholar] [CrossRef]
- Hutyrová, Z.; Ščučka, J.; Hloch, S.; Hlaváček, P.; Zelenak, M. Turning of wood plastic composites by water jet and abrasive water jet. Int. J. Adv. Manuf. Technol. 2015, 84, 1615–1623. [Google Scholar] [CrossRef]
- Valíček, J.; Hloch, S.; Kozak, D. Surface geometric parameters proposal for the advanced control of abrasive waterjet technology. Int. J. Adv. Manuf. Technol. 2008, 41, 323–328. [Google Scholar] [CrossRef]
- Perec, A. Disintegration and recycling possibility of selected abrasives for water jet cutting. DYNA 2017, 84, 249–256. [Google Scholar] [CrossRef]
- Perec, A.; Pude, F.; Kaufeld, M.; Wegener, K. Obtaining the selected surface roughness by means of mathematical model based parameter optimization in abrasive waterjet cutting. J. Mech. Eng. 2017, 63, 606–613. [Google Scholar] [CrossRef] [Green Version]
- Perec, A.; Pude, F.; Grigoryev, A.; Kaufeld, M.; Wegener, K. A study of wear on focusing tubes exposed to corundum-based abrasives in the waterjet cutting process. Int. J. Adv. Manuf. Technol. 2019, 104, 2415–2427. [Google Scholar] [CrossRef]
- Hloch, S.; Kl’oc, J.; Hreha, P.; Magurová, D.; Kozak, D.; Knapčíková, L. Water jet technology using in orthopaedic surgery. Teh. Vjesn. 2013, 20, 351–357. [Google Scholar]
- Dunnen, S.D.; Mulder, L.; Kerkhoffs, G.M.; Dankelman, J.; Tuijthof, G.J. Waterjet drilling in porcine bone: The effect of the nozzle diameter and bone architecture on the hole dimensions. J. Mech. Behav. Biomed. Mater. 2013, 27, 84–93. [Google Scholar] [CrossRef]
- Hloch, S.; Nag, A.; Pude, F.; Foldyna, J.; Zeleňák, M. On-line measurement and monitoring of pulsating saline and water jet disintegration of bone cement with frequency 20 kHz. Measurement 2019, 147, 106828. [Google Scholar] [CrossRef]
- Cárach, J.; Hloch, S.; Petrů, J.; Müller, M.; Hromasová, M.; Nag, A.; Čuha, D.; Hlaváček, P.; Hatala, M.; Kratochvíl, J.; et al. Evaluation of physical phenomena and surface integrity during hydroabrasive disintegration of the rotating workpiece with feedback loop control. Measurement 2019, 134, 586–594. [Google Scholar] [CrossRef]
- Hloch, S.; Valíček, J. Topographical anomaly on surfaces created by abrasive waterjet. Int. J. Adv. Manuf. Technol. 2011, 59, 593–604. [Google Scholar] [CrossRef]
- Valíček, J.; Hloch, S. Using the acoustic sound pressure level for quality prediction of surfaces created by abrasive waterjet. Int. J. Adv. Manuf. Technol. 2009, 48, 193–203. [Google Scholar] [CrossRef]
- Hreha, P.; Radvanska, A.; Knapcikova, L.; Krolczyk, G.; Legutko, S.; Krolczyk, J.; Hloch, S.; Monka, P. Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015, 22, 315–326. [Google Scholar] [CrossRef]
- Pramanik, A.; Zhang, L.; Arsecularatne, J. Prediction of cutting forces in machining of metal matrix composites. Int. J. Mach. Tools Manuf. 2006, 46, 1795–1803. [Google Scholar] [CrossRef] [Green Version]
- Erman, A.; Groza, J.; Li, X.; Choi, H.; Cao, G. Nanoparticle effects in cast Mg-1wt% SiC nano-composites. Mater. Sci. Eng. A 2012, 558, 39–43. [Google Scholar] [CrossRef]
- Jia, D. Influence of SiC particulate size on the microstructural evolution and mechanical properties of Al–6Ti–6Nb matrix composites. Mater. Sci. Eng. A 2000, 289, 83–90. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Y.; Liang, Y.; Zheng, F.; Bi, J.; Tjong, S.C. Nanometric Si3N4 particulate-reinforced aluminum composite. Mater. Sci. Eng. A 1996, 219, 229–231. [Google Scholar] [CrossRef]
- Pramanik, A.; Littlefair, G. Fabrication of nano-particle reinforced metal matrix composites. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; Volume 651, pp. 289–294. [Google Scholar]
- Paknia, A.; Pramanik, A.; Dixit, A.R.; Chattopadhyaya, S. Effect of size, content and shape of reinforcements on the behavior of metal matrix composites (MMCs) under tension. J. Mater. Eng. Perform. 2016, 25, 4444–4459. [Google Scholar] [CrossRef] [Green Version]
- Teng, X.; Huo, D.; Wong, W.L.E.; Meenashisundaram, G.; Gupta, M. Micro-machinability of nanoparticle-reinforced Mg-based MMCs: An experimental investigation. Int. J. Adv. Manuf. Technol. 2016, 87, 2165–2178. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, J.; Xu, C. Machinability study of SiC nano-particles reinforced magnesium nanocomposites during micro-milling processes. In Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, Erie, PA, USA, 12–15 October 2010; pp. 391–398. [Google Scholar]
- Li, J.; Liu, J.; Liu, J.; Ji, Y.; Xu, C. Experimental investigation on the machinability of SiC nano-particles reinforced magnesium nanocomposites during micro-milling processes. Int. J. Manuf. Res. 2013, 8, 64. [Google Scholar] [CrossRef]
- Gopalakannan, S.; Senthilvelan, T. Application of response surface method on machining of Al–SiC nano-composites. Measurement 2013, 46, 2705–2715. [Google Scholar] [CrossRef]
- Ceschini, L.; Dahle, A.; Gupta, M.; Jarfors, A.E.W.; Jayalakshmi, S.; Morri, A.; Rotundo, F.; Toschi, S.; Singh, R.A. Aluminum and Magnesium Metal Matrix Nanocomposites; Springer: New York, NY, USA, 2017; ISBN 9811026807. [Google Scholar]
- Mardi, K.B.; Mallick, A.; Dixit, A.R.; Gupta, M. Enhancing compressive response of Mg-6Al alloy using Al2O3 nanoparticles. Met. Mater. 2018, 56, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mallick, A.; Kujur, M.S.; Tun, K.S.; Gupta, M. Effects of graphene nanoplatelets on the tribological, mechanical, and thermal properties of Mg-3Al alloy nanocomposites. Int. J. Mater. Res. 2019, 110, 534–542. [Google Scholar] [CrossRef]
- Seetharaman, S.; Tekumalla, S.; Gupta, M. Magnesium-Based Nanocomposites; IOP Publishing: Bristol, UK, 2020; ISBN 0750335351. [Google Scholar]
- Gao, C.; Jia, J. Factor analysis of key parameters on cutting force in micromachining of graphene-reinforced magnesium matrix nanocomposites based on FE simulation. Int. J. Adv. Manuf. Technol. 2017, 92, 3123–3136. [Google Scholar] [CrossRef]
- Hou, J.Z.; Zhou, W.; Zhao, N. Methods for prevention of ignition during machining of magnesium alloys. Key Eng. Mater. 2010, 447-448, 150–154. [Google Scholar] [CrossRef]
- Kuczmaszewski, J.; Zagórski, I.; Zgórniak, P. Thermographic study of chip temperature in high-speed dry milling magnesium alloys. Manag. Prod. Eng. Rev. 2016, 7, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Hihara, L.H.; Panquites, P., IV. Method of Electrochemical Machining (ECM) of Particulate Metal-Matrix Composites (MMcs). US Patent US6110351A, 29 August 2000. [Google Scholar]
- Hashish, M. Advances in composite machining with abrasive-waterjets. In Processing and Manufacturing of Composite Materials. In Proceedings of the Symposium, 112th ASME Winter Annual Meeting, Atlanta, GA, USA, 1–6 December 1991; American Society of Mechanical Engineers: New York, NY, USA, 1991; pp. 93–111. [Google Scholar]
- Li, H.; Wang, J. An experimental study of abrasive waterjet machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2015, 81, 361–369. [Google Scholar] [CrossRef]
- Nouraei, H.; Wodoslawsky, A.; Papini, M.; Spelt, J. Characteristics of abrasive slurry jet micro-machining: A comparison with abrasive air jet micro-machining. J. Mater. Process. Technol. 2013, 213, 1711–1724. [Google Scholar] [CrossRef]
- Liu, H.-T. Waterjet technology for machining fine features pertaining to micromachining. J. Manuf. Process. 2010, 12, 8–18. [Google Scholar] [CrossRef]
- Hashish, M. Optimization factors in abrasive-waterjet machining. J. Eng. Ind. 1991, 113, 29–37. [Google Scholar] [CrossRef]
- Azmir, M.A.; Ahsan, A.; Rahmah, A. Effect of abrasive water jet machining parameters on aramid fibre reinforced plastics composite. Int. J. Mater. Form. 2008, 2, 37–44. [Google Scholar] [CrossRef]
- Mohamad, W.; Kasim, M.; Norazlina, M.; Hafiz, M.; Izamshah, R.; Mohamed, S. Effect of standoff distance on the kerf characteristic during abrasive water jet machining. Results Eng. 2020, 6, 100101. [Google Scholar] [CrossRef]
- Wang, J.; Kuriyagawa, T.; Huang, C.Z. An Experimental study to enhance the cutting performance in abrasive waterjet machining. Mach. Sci. Technol. 2003, 7, 191–207. [Google Scholar] [CrossRef]
- Hascalik, A.; Çaydaş, U.; Gürün, H. Effect of traverse speed on abrasive waterjet machining of Ti–6Al–4V alloy. Mater. Des. 2007, 28, 1953–1957. [Google Scholar] [CrossRef]
- Babu, M.K.; Chetty, O.V.K. A study on the use of single mesh size abrasives in abrasive waterjet machining. Int. J. Adv. Manuf. Technol. 2006, 29, 532–540. [Google Scholar] [CrossRef]
- Mardi, K.B.; Dixit, A.R.; Mallick, A.; Pramanik, A.; Ballokova, B.; Hvizdos, P.; Foldyna, J.; Scucka, J.; Hlavacek, P.; Zelenak, M. Surface integrity of Mg-based nanocomposite produced by Abrasive Water Jet Machining (AWJM). Mater. Manuf. Process. 2017, 32, 1707–1714. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Wong, W. Magnesium-based nanocomposites: Lightweight materials of the future. Mater. Charact. 2015, 105, 30–46. [Google Scholar] [CrossRef]
- EN ISO. 4287 Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters (ISO 4287: 1997); CEN/CENELEC: Brussels, Belgium, 1998. [Google Scholar]
- Fischer-Cripps, A.C. Nanoindentation test standards. In Nanoindentation; Springer: New York, NY, USA, 2004; pp. 159–177. [Google Scholar] [CrossRef]
- Pramanik, A. Developments in the non-traditional machining of particle reinforced metal matrix composites. Int. J. Mach. Tools Manuf. 2014, 86, 44–61. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.P.; Brunton, J.H. Drop impingement erosion of metals. In Royal Society A: Mathematical, Physical and Engineering Sciences; Royal Society: London, UK, 1970; Volume 314, pp. 549–565. [Google Scholar]
- Richman, R.; McNaughton, W. Correlation of cavitation erosion behavior with mechanical properties of metals. Wear 1990, 140, 63–82. [Google Scholar] [CrossRef]
- Belahadji, B.; Franc, J.P.; Michel, J.M. A Statistical analysis of cavitation erosion pits. J. Fluids Eng. 1991, 113, 700–706. [Google Scholar] [CrossRef]
- Tilly, G. A two stage mechanism of ductile erosion. Wear 1973, 23, 87–96. [Google Scholar] [CrossRef]
- Bitter, J. A study of erosion phenomena: Part II. Wear 1963, 6, 169–190. [Google Scholar] [CrossRef]
- Jennings, W.H.; Head, W.J.; Manning, C.R., Jr. A mechanistic model for the prediction of ductile erosion. Wear 1976, 40, 93–112. [Google Scholar] [CrossRef]
- Field, J. ELSI conference: Invited lecture: Liquid impact: Theory, experiment, applications. Wear 1999, 233–235, 1–12. [Google Scholar] [CrossRef]
- Momber, A.W.; Kovacevic, R. Principles of Abrasive Water Jet Machining; Springer Science & Business Media: Berlin, Germany, 2012; ISBN 1447115724. [Google Scholar]
- Haghbin, N.; Spelt, J.K.; Papini, M. Abrasive waterjet micro-machining of channels in metals: Comparison between machining in air and submerged in water. Int. J. Mach. Tools Manuf. 2015, 88, 108–117. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Fan, J. Analysis and modelling of particle velocities in micro-abrasive air jet. Int. J. Mach. Tools Manuf. 2009, 49, 850–858. [Google Scholar] [CrossRef]
- Leu, M.C.; Meng, P.; Geskin, S.; Tismeneskiy, L. Mathematical modeling and experimental verification of stationary waterjet cleaning process. J. Manuf. Sci. Eng. 1998, 120, 571–579. [Google Scholar] [CrossRef]
- Huang, L.; Folkes, J.; Kinnell, P.; Shipway, P. Mechanisms of damage initiation in a titanium alloy subjected to water droplet impact during ultra-high pressure plain waterjet erosion. J. Mater. Process. Technol. 2012, 212, 1906–1915. [Google Scholar] [CrossRef]
- Chillman, A.; Ramulu, M.; Hashish, M. Waterjet and water-air jet surface processing of a titanium alloy: A parametric evaluation. J. Manuf. Sci. Eng. 2010, 132, 011012. [Google Scholar] [CrossRef]
Composite (wt.%) | Mg-Al Alloy (wt.%) | Reinforcement | Reinforced Particles Size (nm) | |
---|---|---|---|---|
Magnesium | Aluminum | Al2O3 (wt.%) | ||
94 | 6 | |||
A: (Mg-6Al/0.66% Al2O3) | 99.34 | 0.66 | 50 | |
B: (Mg-6Al/1.11% Al2O3) | 98.89 | 1.11 | 50 |
Parameters | Symbols | Unit | Value |
---|---|---|---|
Water pressure | p | MPa | Variable 100, 400 |
Traverse speed | vt | mm/min | Variable 20, 40, 250, 500 |
Sample thickness | h | mm | 8 |
Mass flow rate of abrasive | ma | g/min | Variable 200, 300 |
Abrasive size | - | Mesh (mm) | 80 (0.177) |
Diameter of nozzle | do | mm | 0.33 |
Diameter of focusing tube | df | mm | 0.9 |
Stand-off distance | z | mm | 2 |
Position of cutting head | φ | ° | 90 |
Abrasive | - | - | Australian garnet |
Composite Materials | Experiment Number | Water Pressure (MPa) | Abrasive Flow Rate (g/min) | Traverse Speed (mm/min) |
---|---|---|---|---|
A: (Mg-6Al/0.66% Al2O3) | A1 | 400 | 300 | 20 |
A2 | 400 | 300 | 250 | |
A3 | 400 | 300 | 500 | |
A4 | 100 | 200 | 40 | |
B: (Mg-6Al/1.11% Al2O3) | B1 | 400 | 300 | 20 |
B2 | 400 | 300 | 250 | |
B3 | 400 | 300 | 500 | |
B4 | 100 | 200 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mardi, K.B.; Dixit, A.R.; Pramanik, A.; Hvizdos, P.; Mallick, A.; Nag, A.; Hloch, S. Surface Topography Analysis of Mg-Based Composites with Different Nanoparticle Contents Disintegrated Using Abrasive Water Jet. Materials 2021, 14, 5471. https://doi.org/10.3390/ma14195471
Mardi KB, Dixit AR, Pramanik A, Hvizdos P, Mallick A, Nag A, Hloch S. Surface Topography Analysis of Mg-Based Composites with Different Nanoparticle Contents Disintegrated Using Abrasive Water Jet. Materials. 2021; 14(19):5471. https://doi.org/10.3390/ma14195471
Chicago/Turabian StyleMardi, Kumari Bimla, Amit Rai Dixit, Alokesh Pramanik, Pavol Hvizdos, Ashis Mallick, Akash Nag, and Sergej Hloch. 2021. "Surface Topography Analysis of Mg-Based Composites with Different Nanoparticle Contents Disintegrated Using Abrasive Water Jet" Materials 14, no. 19: 5471. https://doi.org/10.3390/ma14195471
APA StyleMardi, K. B., Dixit, A. R., Pramanik, A., Hvizdos, P., Mallick, A., Nag, A., & Hloch, S. (2021). Surface Topography Analysis of Mg-Based Composites with Different Nanoparticle Contents Disintegrated Using Abrasive Water Jet. Materials, 14(19), 5471. https://doi.org/10.3390/ma14195471