Biodistribution of Quantum Dots-Labelled Halloysite Nanotubes: A Caenorhabditis elegans In Vivo Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Quantum Dots on HNT
2.2.1. HNT Surface Modification with (3-Aminopropyl)triethoxysilane
2.2.2. Halloysite Surface Modification with 1,2-Bis(2-furylmethyl-ene)hydrazine
2.2.3. QDs Synthesis on the Surface of Modified Clay Nanotubes
2.3. Nanomaterials Characterization
2.4. In Vivo Studies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Massaro, M.; Colletti, C.G.; Lazzara, G.; Milioto, S.; Noto, R.; Riela, S. Halloysite nanotubes as support for metal-based catalysts. J. Mater. Chem. A 2017, 5, 13278–13293. [Google Scholar] [CrossRef]
- Zahidah, K.A.; Kakooei, S.; Ismail, M.C.; Bothi Raja, P. Halloysite nanotubes as nanocontainer for smart coating application: A review. Prog. Org. Coat. 2017, 111, 175–185. [Google Scholar] [CrossRef]
- Goda, E.S.; Gab-Allah, M.A.; Singu, B.S.; Yoon, K.R. Halloysite nanotubes based electrochemical sensors: A review. Microchem. J. 2019, 147, 1083–1096. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination 2020, 475, 114171. [Google Scholar] [CrossRef]
- Ariga, K.; Leong, D.T.; Mori, T. Nanoarchitectonics for Hybrid and Related Materials for Bio-Oriented Applications. Adv. Funct. Mater. 2017, 28, 1702905. [Google Scholar] [CrossRef]
- Du, M.; Guo, B.; Jia, D. Newly emerging applications of halloysite nanotubes: A review. Polym. Inter. 2010, 59, 574–582. [Google Scholar] [CrossRef]
- Li, Q.; Ren, T.; Perkins, P.; Hu, X.; Wang, X. Applications of halloysite nanotubes in food packaging for improving film performance and food preservation. Food Control 2021, 124, 107876. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 2014, 39, 1498–1525. [Google Scholar] [CrossRef]
- Abdullayev, E.; Sakakibara, K.; Okamoto, K.; Wei, W.; Ariga, K.; Lvov, Y. Natural Tubule Clay Template Synthesis of Silver Nanorods for Antibacterial Composite Coating. ACS Appl. Mater. Interfaces 2011, 3, 4040–4046. [Google Scholar] [CrossRef]
- Hanif, M.; Jabbar, F.; Sharif, S.; Abbas, G.; Farooq, A.; Aziz, M. Halloysite nanotubes as a new drug-delivery system: A review. Clay Min. 2016, 51, 469–477. [Google Scholar] [CrossRef]
- Stavitskaya, A.; Batasheva, S.; Vinokurov, V.; Fakhrullina, G.; Sangarov, V.; Lvov, Y.; Fakhrullin, R. Antimicrobial applications of clay nanotube-based composites. Nanomaterials 2019, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Leporatti, S.; Cascione, M.; Matteis, V.D.; Rinaldi, R. Design of nano-clays for drug delivery and bio-imaging: Can toxicity be an issue? Nanomedicine 2020, 15, 2429–2432. [Google Scholar] [CrossRef]
- Rong, R.; Zhang, Y.; Zhang, Y.; Hu, Y.; Yang, W.; Hu, X.; Zhang, Q. Inhibition of inhaled halloysite nanotube toxicity by trehalose through enhanced autophagic clearance of p62. Nanotoxicology 2019, 13, 354–368. [Google Scholar] [CrossRef]
- Santos, A.C.; Pereira, I.; Reis, S.; Veiga, F.; Saleh, M.; Lvov, Y. Biomedical potential of clay nanotube formulations and their toxicity assessment. Expert Opin. Drug Deliv. 2019, 16, 1169–1182. [Google Scholar] [CrossRef]
- Kovaleva, N.Y.; Raevskaya, E.G.; Roshchin, A.V. Problems of safety of nanomaterials: Nanosecurity, nanotoxicology, nanoinformatics. Chem. Saf. 2017, 1, 44–87. [Google Scholar]
- Stavitskaya, A.; Shakhbazova, C.; Cherednichenko, Y.; Nigamatzyanova, L.; Fakhrullina, G.; Khaertdinov, N.; Kuralbayeva, G.; Filimonova, A.; Vinokurov, V.; Fakhrullin, R. Antibacterial properties and in vivo studies of tannic acid-stabilized silver-halloysite nanomaterials. Clay Min. 2020, 55, 112–119. [Google Scholar] [CrossRef]
- Gorbachevskii, M.V.; Stavitskaya, A.V.; Novikov, A.A.; Fakhrullin, R.F.; Rozhina, E.V.; Naumenko, E.A.; Vinokurov, V.A. Fluorescent gold nanoclusters stabilized on halloysite nanotubes: In vitro study on cytotoxicity. Appl. Clay Sci. 2021, 207, 106106. [Google Scholar] [CrossRef]
- Abhinayaa, R.; Jeevitha, G.; Mangalaraj, D.; Ponpandian, N.; Vidhya, K.; Angayarkanni, J. Cytotoxic consequences of Halloysite nanotube/iron oxide nanocomposite and iron oxide nanoparticles upon interaction with bacterial, non-cancerous and cancerous cells. Colloids Surf. B Biointerfaces 2018, 169, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Stavitskaya, A.V.; Kozlova, E.A.; Kurenkova, A.Y.; Glotov, A.P.; Selischev, D.S.; Ivanov, E.V.; Kozlov, D.V.; Vinokurov, V.A.; Fakhrullin, R.F.; Lvov, Y.M. Ru/CdS Quantum Dots Templated on Clay Nanotubes as Visible-Light-Active Photocatalysts: Optimization of S/Cd Ratio and Ru Content. Chem. Eur. J. 2020, 26, 13085. [Google Scholar] [CrossRef]
- Kargozar, S.; Hoseini, S.J.; Milan, P.B.; Hooshmand, S.; Kim, H.-W.; Mozafari, M. Quantum Dots: A Review from Concept to Clinic. Biotechnol. J. 2020, 15, 2000117. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cui, Y.; Liu, M.; Huang, H.; Deng, F.; Mao, L.; Wei, Y. Surface grafting of fluorescent polymers on halloysite nanotubes through metal-free light-induced controlled polymerization: Preparation, characterization and biological imaging. Mater. Sci. Eng. C 2020, 111, 110804. [Google Scholar] [CrossRef]
- Stavitskaya, A.; Novikov, A.; Kotelev, M.; Kopitsyn, D.; Rozhina, E.; Ishmukhametov, I.; Fakhrullin, R.; Ivanov, E.; Lvov, Y.; Vinokurov, V. Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes. Nanomaterials 2018, 8, 391. [Google Scholar] [CrossRef] [Green Version]
- Micó-Vicent, B.; Martínez-Verdú, F.M.; Novikov, A.; Stavitskaya, A.; Vinokurov, V.; Rozhina, E.; Lvov, Y. Stabilized Dye-Pigment Formulations with Platy and Tubular Nanoclays. Adv. Funct. Mater. 2017, 18, 1808567. [Google Scholar] [CrossRef] [Green Version]
- Cabreiro, F.; Gems, D. Worms need microbes too: Microbiota, health and aging in Caenorhabditis elegans. EMBO Mol. Med. 2013, 5, 1300–1310. [Google Scholar] [CrossRef] [PubMed]
- Hsu-Kim, H.; Kucharzyk, K.H.; Zhang, T.; Deshusses, M.A. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ. Sci. Technol. 2013, 47, 2441–2456. [Google Scholar] [CrossRef]
- Qu, Y.; Li, W.; Zhou, Y.; Liu, X.; Zhang, L.; Wang, L.; Li, Y.; Lida, A.; Tang, Z.; Zhao, Y.; et al. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett. 2011, 11, 3174–3183. [Google Scholar] [CrossRef]
- Solvas, X.C.; Geier, F.M.; Leroi, A.M.; Bundy, J.G.; Edel, J.B.; de Mello, A.J. High-throughput age synchronisation of Caenorhabditis elegans. Chem. Commun. 2011, 47, 9801–9803. [Google Scholar] [CrossRef]
- Lee, S.; Horn, V.; Julien, E.; Liu, Y.; Wysocka, J.; Bowerman, B.; Hengartner, M.O.; Herr, W. Epigenetic regulation of histone H3 serine 10 phosphorylation status by HCF-1 proteins in C. elegans and mammalian cells. PLoS ONE 2007, 2, e1213. [Google Scholar] [CrossRef] [PubMed]
- Vistbakka, J.; VanDuyn, N.; Wong, G.; Nass, R. C. elegans as a genetic model system to identify Parkinson’s disease-associated therapeutic targets. CNS Neurol. Disord.-Drug Targets 2012, 11, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Grisoni, K.; Gieseler, K.; Mariol, M.-C.; Martin, E.; Carre-Pierrat, M.; Moulder, G.; Barstead, R.; Sgalat, L. The stn-1 syntrophin gene of C. elegans is functionally related to dystrophin and dystrobrevin. J. Mol. Biol. 2003, 332, 1037–1046. [Google Scholar] [CrossRef]
- Sternberg, P.W.; Han, M. Genetics of RAS signaling in C. elegans. Trends Genet. 1998, 14, 466–472. [Google Scholar] [CrossRef]
- Wang, D. Biological effects, translocation, and metabolism of quantum dots in the nematode Caenorhabditis elegans. Toxicol. Res. 2016, 5, 1003–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakhrullina, G.; Khakimova, E.; Akhatova, E.; Lazzara, G.; Parisi, F.; Fakhrullin, R. Selective antimicrobial effects of curcumin@ halloysite nanoformulation: A Caenorhabditis elegans study. ACS Appl. Mater. Interfaces 2019, 11, 23050–23064. [Google Scholar] [CrossRef] [PubMed]
- Fakhrullina, G.I.; Akhatova, F.S.; Lvov, Y.M.; Fakhrullin, R.F. Toxicity of halloysite clay nanotubes in vivo: A Caenorhabditis elegans study. Environ. Sci. Nano. 2015, 2, 54–59. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, L.; Xu, J.; Gan, Y. Controllable synthesis of CdS quantum dots and their photovoltaic application on quantum-dot-sensitized ZnO nanorods. J. Solid State Electrochem. 2016, 20, 533–540. [Google Scholar] [CrossRef]
- Zhong, X.; Feng, Y.; Knoll, W.; Han, M. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. ACS 2003, 125, 13559–13563. [Google Scholar] [CrossRef]
- Mohammed, I.M.S.; Gubari, G.M.M.; Huse, N.P. Effect of Cd/S ratio on growth and physical properties of CdS thin films for photosensor application. J. Mater. Sci: Mater. Electron. 2020, 11, 9989–9996. [Google Scholar] [CrossRef]
- Patidar, D.; Saxena, N.S.; Sharma, T.P. Structural, optical and electrical properties of CdZnS thin films. J. Modern Optics. 2008, 55, 79–88. [Google Scholar] [CrossRef]
- Liu, Y.; Naumenko, E.; Akhatova, F.; Zou, Q.; Fakhrullin, R.; Yan, X. Self-Assembled Peptide Nanoparticles for Enhanced Dark-Field Hyperspectral Imaging at the Cellular and Invertebrate Level. Chem. Eng. J. 2021, 424, 130348. [Google Scholar] [CrossRef]
- Vinokurov, V.; Stavitskaya, A.; Ivanov, E.; Gushchin, P.; Kozlov, D.; Kurenkova, A.; Kolinko, P.; Kozlova, E.; Lvov, Y. Halloysite Nanoclay Based CdS Formulations with High Catalytic Activity in Hydrogen Evolution Reaction under Visible Light Irradiation. ACS Sustain. Chem. Eng. 2017, 5, 11316–11323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavitskaya, A.; Fakhrullina, G.; Nigamatzyanova, L.; Sitmukhanova, E.; Khusnetdenova, E.; Fakhrullin, R.; Vinokurov, V. Biodistribution of Quantum Dots-Labelled Halloysite Nanotubes: A Caenorhabditis elegans In Vivo Study. Materials 2021, 14, 5469. https://doi.org/10.3390/ma14195469
Stavitskaya A, Fakhrullina G, Nigamatzyanova L, Sitmukhanova E, Khusnetdenova E, Fakhrullin R, Vinokurov V. Biodistribution of Quantum Dots-Labelled Halloysite Nanotubes: A Caenorhabditis elegans In Vivo Study. Materials. 2021; 14(19):5469. https://doi.org/10.3390/ma14195469
Chicago/Turabian StyleStavitskaya, Anna, Gölnur Fakhrullina, Läysän Nigamatzyanova, Eliza Sitmukhanova, Elnara Khusnetdenova, Rawil Fakhrullin, and Vladimir Vinokurov. 2021. "Biodistribution of Quantum Dots-Labelled Halloysite Nanotubes: A Caenorhabditis elegans In Vivo Study" Materials 14, no. 19: 5469. https://doi.org/10.3390/ma14195469
APA StyleStavitskaya, A., Fakhrullina, G., Nigamatzyanova, L., Sitmukhanova, E., Khusnetdenova, E., Fakhrullin, R., & Vinokurov, V. (2021). Biodistribution of Quantum Dots-Labelled Halloysite Nanotubes: A Caenorhabditis elegans In Vivo Study. Materials, 14(19), 5469. https://doi.org/10.3390/ma14195469