Research on Flashover Prediction Method of Large-Space Timber Structures in a Fire
Abstract
:1. Introduction
1.1. The Critical Criterion of Flashover
1.2. The General Prediction Method of Flashover Fire
1.3. Non-Linear Dynamic Model Prediction Method of Flashover Fire
2. Numerical Simulation
2.1. Fire Dynamics Simulator (FDS)
2.2. FDS LES Model Validation
2.2.1. Shi’s Experiment (2009)
2.2.2. Zhang’s Experiment (2015)
2.2.3. Li’s Experiment (2017)
2.3. Simulation Setup and Conditions
2.4. Determination of Grid Size
3. The Temperature–Time Model of the Tmax
3.1. General
3.2. The Centerline Temperature Model of Smoke Plume Area
3.3. The Maximum Temperature Model of the Smoke Layer
3.4. The Temperature–Time Model of the Tmax
4. Flashover Prediction for Large-Space Timber Structures
4.1. The Evolution of Flashover Fire
4.2. Critical Criterion for Flashover
4.3. Induction Period of Flashover
4.3.1. The Induction Period of the Steady-State Fire Model
4.3.2. The Induction Period of the Unsteady-State Fire Model
- Transient flashover fire
- 2.
- Transient quasi-steady-flashover fire
5. Conclusions
- (1)
- Not all large-space timber structure fires have flashovers that mainly depend on the Tmax. Flashover occurs when the Tmax is slightly higher than the ignition temperature of the timber.
- (2)
- When the ignition temperature of timber is set to 300 °C, the Tmax required for flashover to occur is about 300–320 °C, which can be regarded as the critical criterion for flashover to occur in large-space timber structures.
- (3)
- The induction period of flashover mainly depends on the temperature of the smoke layer, the space size and the fire growth rate. The lower the temperature of the smoke layer, the larger the space size, and the slower the fire growth rate, the longer the induction period of flashover.
- (4)
- When the Tmax is in the range of 300–400 °C, the dispersion of the flashover induction period is greater, and when the temperature is higher than 400 °C, the flashover time is more consistent (the difference is less than 5 min).
- (5)
- The prediction formula of the flashover induction period can not only accurately predict the flashover time corresponding to a flashover temperature greater than 400 °C, but roughly estimate the flashover time corresponding to a flashover temperature less than 400 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Space Area (m2) | Space Height (m) | Number of Grids (million)/Run Time (d) | Total Time (d) | |||||
---|---|---|---|---|---|---|---|---|
HRR (MW) | ||||||||
2 | 5 | 10 | 15 | 20 | 25 | |||
1000 | 6 | 0.22/1.13 | 0.21/1.15 | 0.23/1.17 | 0.26/1.20 | 0.28/1.23 | 0.32/1.25 | 7.13 |
9 | 0.59/1.75 | 0.45/1.77 | 0.48/1.80 | 0.50/1.82 | 0.52/1.85 | 0.57/1.87 | 10.85 | |
12 | 0.79/2.33 | 0.80/2.38 | 0.82/2.40 | 0.85/2.43 | 0.87/2.45 | 0.91/2.50 | 14.48 | |
15 | 0.99/3.08 | 1.00/3.13 | 1.02/3.15 | 1.04/3.17 | 1.06/3.23 | 1.31/3.28 | 19.03 | |
18 | 1.18/3.58 | 1.19/3.60 | 1.22/3.63 | 1.24/3.68 | 1.26/3.70 | 1.18/3.75 | 21.93 | |
20 | 1.31/4.13 | 1.32/4.18 | 1.35/4.20 | 1.37/4.23 | 1.39/4.25 | 1.44/4.30 | 25.28 | |
2000 | 6 | 0.33/2.36 | 0.32/2.43 | 0.34/2.45 | 0.36/2.48 | 0.38/2.50 | 0.43/2.55 | 14.78 |
9 | 0.73/3.60 | 0.61/3.65 | 0.63/3.68 | 0.66/3.70 | 0.68/3.75 | 0.72/3.80 | 22.18 | |
12 | 1.32/4.90 | 0.94/4.95 | 0.96/4.98 | 0.99/5.03 | 1.01/5.05 | 1.05/5.08 | 29.98 | |
15 | 1.94/6.15 | 1.47/6.20 | 1.49/6.22 | 1.52/6.25 | 1.53/6.28 | 1.58/6.33 | 37.40 | |
18 | 2.33/7.38 | 2.35/7.45 | 2.37/7.50 | 2.39/7.53 | 2.41/7.55 | 2.46/7.63 | 45.03 | |
20 | 2.60/8.15 | 2.61/8.23 | 2.63/8.28 | 2.65/8.30 | 2.67/8.33 | 2.72/8.38 | 49.65 | |
3000 | 6 | 0.32/3.65 | 0.34/3.70 | 0.36/3.73 | 0.38/3.75 | 0.40/3.80 | 0.45/3.83 | 22.45 |
9 | 0.73/5.45 | 0.61/5.48 | 0.63/5.50 | 0.66/5.55 | 0.68/5.58 | 0.72/5.63 | 33.18 | |
12 | 1.32/7.33 | 0.94/7.38 | 0.96/7.40 | 0.99/7.43 | 1.01/7.45 | 1.05/7.50 | 44.48 | |
15 | 2.91/9.13 | 1.47/9.18 | 1.49/9.20 | 1.52/9.23 | 1.53/9.25 | 1.58/9.30 | 55.28 | |
18 | 3.49/10.95 | 3.50/11.00 | 3.52/11.03 | 3.55/11.05 | 3.57/11.07 | 3.61/11.10 | 66.20 | |
20 | 3.88/12.13 | 3.89/12.20 | 3.91/12.25 | 3.93/12.30 | 3.95/12.31 | 4.00/12.33 | 73.50 | |
4000 | 6 | 0.53/4.75 | 0.54/4.83 | 0.56/4.88 | 0.59/4.93 | 0.61/4.95 | 0.65/5.05 | 29.38 |
9 | 1.09/7.13 | 0.97/7.20 | 0.99/7.23 | 1.02/7.28 | 1.04/7.30 | 1.08/7.33 | 43.45 | |
12 | 1.73/9.60 | 1.34/9.65 | 1.37/9.70 | 1.39/9.73 | 1.41/9.75 | 1.45/9.80 | 58.23 | |
15 | 2.83/11.88 | 1.26/11.93 | 1.28/11.95 | 1.31/11.98 | 1.32/12.00 | 1.37/12.05 | 71.78 | |
18 | 4.58/14.25 | 2.99/14.35 | 3.01/14.38 | 3.04/14.43 | 3.06/14.48 | 3.10/14.55 | 86.43 | |
20 | 5.08/15.38 | 4.15/15.43 | 3.46/15.45 | 3.48/15.48 | 3.50/15.50 | 3.55/15.55 | 92.78 | |
5000 | 6 | 0.63/5.75 | 0.64/5.83 | 0.66/5.88 | 0.68/5.95 | 0.70/6.00 | 0.75/6.05 | 35.45 |
9 | 1.26/9.00 | 1.14/9.05 | 1.16/9.10 | 1.19/9.13 | 1.21/9.15 | 1.25/9.20 | 54.63 | |
12 | 1.92/12.05 | 1.54/12.01 | 1.56/12.13 | 1.58/12.15 | 1.60/12.18 | 1.65/12.25 | 72.85 | |
15 | 3.10/14.63 | 2.30/14.68 | 2.32/14.83 | 2.34/14.83 | 2.36/15.00 | 2.41/15.08 | 89.13 | |
18 | 4.56/17.60 | 3.17/17.65 | 3.19/17.68 | 3.22/17.70 | 3.24/17.75 | 3.28/17.80 | 106.18 | |
20 | 5.78/19.55 | 4.51/19.63 | 3.81/19.65 | 3.84/19.70 | 3.86/19.75 | 3.90/19.83 | 118.10 | |
6000 | 6 | 0.73/6.88 | 0.74/6.95 | 0.76/7.00 | 0.79/7.08 | 0.81/7.13 | 0.85/7.33 | 42.35 |
9 | 1.45/10.63 | 1.33/10.70 | 1.35/10.73 | 1.38/10.75 | 1.40/10.83 | 1.44/10.88 | 64.50 | |
12 | 2.13/14.05 | 1.75/14.15 | 1.77/14.20 | 1.80/14.23 | 1.82/14.25 | 1.86/14.30 | 85.18 | |
15 | 3.39/17.88 | 2.80/17.95 | 2.82/17.98 | 2.84/18.03 | 2.86/18.08 | 2.91/18.13 | 108.03 | |
18 | 4.88/21.25 | 3.49/21.33 | 3.51/21.40 | 3.54/21.45 | 3.56/21.50 | 3.60/21.60 | 128.53 | |
20 | 6.18/24.13 | 4.90/24.25 | 4.21/24.35 | 4.23/24.40 | 4.25/24.50 | 4.30/24.55 | 146.48 | |
2025.85 |
References
- NFPA 921: Guide for Fire and Explosion Investigations; National Fire Protection Association: Quincy, MA, USA, 2004.
- Peacock, R.; Reneke, P.; Bukowski, R.; Babrauskas, V. Defining flashover for fire hazard calculations. Fire Saf. J. 1999, 32, 331–345. [Google Scholar] [CrossRef]
- Zhang, P.H.; Liu, C.; Tang, X.; Zhong, M.H. The thermal criteria on rubber ignition in flashover fires under longitudinal ventilation surroundings. Appl. Therm. Eng. 2016, 103, 1408–1415. [Google Scholar] [CrossRef]
- Horvat, A.; Sinai, Y.; Pearson, A.; Most, J. Contribution to flashover modelling: Development of a validated numerical model for ignition of non-contiguous wood samples. Fire Saf. J. 2009, 44, 779–788. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wang, L.; Chen, L. Energy-based time equivalent approach for evaluating the fire resistance of timber components exposed to realistic design fire curves. Struct. Des. Tall Spec. Build. 2021, 30, e1861. [Google Scholar] [CrossRef]
- Tsai, K.C.; Chen, H.H. Experimental study of fuel sootiness effects on flashover. J. Hazard. Mater. 2010, 178, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Rasbsh, D.J. Major fire disasters involving flashover. Fire Saf. J. 1991, 17, 85–93. [Google Scholar] [CrossRef]
- Waterman, T.E. Room flashover-criteria and synthesis. Fire Technol. 1968, 4, 25–31. [Google Scholar] [CrossRef]
- Quintiere, J.G.; McCaffrey, B.J. The Burning of Wood and Plastic Cribs in an Enclosure; NIST Interagency/Internal Report (NISTIR), National Bureau of Standard and Technology: Gaithersburg, MD, USA, 1979; Volume 1, pp. 80–158. [Google Scholar]
- McCaffrey, B.J.; Quintiere, J.D.; Harkleroad, M.F. Esitmating room temperatures and the likelihood of flashover using fire test data correlation. Fire Technol. 1981, 17, 98–119. [Google Scholar] [CrossRef]
- Chow, W.K.; Leung, C.W.; Zou, G.W.; Dong, H.; Gao, Y. Flame spread over plastic materials in flashover room fires. Constr. Build. Mater. 2008, 22, 629–634. [Google Scholar] [CrossRef]
- Babrauskas, V. Full Scale Burning Behavior of Upholstered Chairs; NIST Interagency/Internal Report (NISTIR); National Bureau of Standards and Technology: Gaithersburg, MD, USA, 1979. [Google Scholar]
- Hägglund, B.; Jansson, R.; Onnermark, B. Fire Development in Residential Rooms after Ignition Form Nuclear Explosions; FOA Report C 20016-D6 (A3); Forsvarets Forskningsanstalt: Stockholm, Sweden, 1974. [Google Scholar]
- Fang, J.B. Measurement of the Behavior of Incidental Fires in a Compartment; NIST Interagency/Internal Report (NISTIR); National Bureau of Standard and Technology: Gaithersburg, MD, USA, 1975. [Google Scholar]
- Yuen, W.W.; Chow, W.K. The role of thermal radiation on the initiation of flashover in a compartment fire. Int. J. Heat Mass Transf. 2004, 47, 4265–4276. [Google Scholar] [CrossRef] [Green Version]
- Babrauskas, V. Estimating room flashover potential. Fire Technol. 1980, 16, 94–103. [Google Scholar] [CrossRef]
- Thomas, P. Testing products and materials for their contribution to flashover in rooms. Fire Mater. 1981, 5, 103–111. [Google Scholar] [CrossRef]
- Babrauskas, V.; Peacock, R.; Reneke, P. Defining flashover for fire hazard calculations, Part II. Fire Saf. J. 2003, 38, 613–622. [Google Scholar] [CrossRef]
- Quintiere, J.G.; McCaffrey, B.J.; DenBraven, K. Experimental and theoretical analysis of quasi-steady small-scale enclosure fires. Symp. Int. Combust. 1979, 17, 1125–1137. [Google Scholar] [CrossRef]
- Yau, T.M.; Francis, J. The influence of ceiling temperature on the mass loss rate in compartment fires. In Proceedings of the 3rd International Seminar on fire and Explosion Hazards, Windermere, Lake District, UK, 10–14 April 2000; pp. 329–340. [Google Scholar]
- Thomas, P.H.; Bullen, M.L.; Quintiere, J.G.; McCaffrey, B.J. Flashover and instabilities in fire behavior. Combust. Flame 1980, 38, 159–171. [Google Scholar] [CrossRef]
- Hasemi, Y. Thermal instability in transient compartment fire–An approach to characterize flashover and estimate its mechanisms. Fire Sci. Technol. 1982, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Beard, A.N.; Drysdale, D.D.; Holborn, P.G.; Bishop, S.R. A non-linear model of flashover. Fire Sci. Technol. 1992, 12, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Beard, A.N.; Drysdale, D.D.; Holborn, P.G.; Bishop, S.R. A model of instability and flashover. J. Appl. Fire Sci. 1995, 4, 3–16. [Google Scholar] [CrossRef]
- Beard, A.N. Dependence of flashover on assumed value of the discharge coefficient. Fire Saf. J. 2001, 36, 25–36. [Google Scholar] [CrossRef]
- Bishop, S.R.; Holborn, P.G.; Beard, A.N.; Drysdale, D.D. Non-linear dynamics of flashover in compartment fires. Fire Saf. 1993, 21, 11–45. [Google Scholar] [CrossRef]
- Holborn, P.G.; Bishop, S.R.; Drysdale, D.D.; Beard, A.N. Experimental and theoretical models of flashover. Fire Saf. J. 1993, 21, 257–266. [Google Scholar] [CrossRef]
- Graham, T.L.; Makhviladze, G.M.; Roberts, J.P. On the theory of flashover development. Fire Saf. J. 1995, 25, 229–259. [Google Scholar] [CrossRef]
- Graham, T.L.; Makhviladze, G.M.; Roberts, J.P. The effects of the thermal inertia of the walls upon flashover development. Fire Saf. J. 1999, 32, 35–60. [Google Scholar] [CrossRef]
- Liang, F.M.; Chow, W.K.; Liu, S.D. Preliminary Studies on Flashover Mechanism in Compartment Fires. J. Fire Sci. 2002, 20, 87–112. [Google Scholar] [CrossRef]
- Novozhilov, V. Non-linear dynamical model of compartment fire flashover. J. Eng. Math. 2010, 67, 387–400. [Google Scholar] [CrossRef]
- Weng, W.G.; Fan, W.C. An inspection criterion for flashover in compartment fires based on catastrophe theory. J. Fire Sci. 2001, 19, 413–427. [Google Scholar] [CrossRef]
- Stern-Gottfried, J.; Rein, G.; Bisby, L.A.; Torero, J.L. Experimental review of the homogeneous temperature assumption in post-flashover compartment fires. Fire Saf. J. 2010, 45, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Lennon, T.; Moore, D. The natural fire safety concept–Full-scale tests at Cardington. Fire Saf. J. 2003, 38, 623–643. [Google Scholar] [CrossRef]
- Rein, G.; Abecassis-Empis, G.; Carvel, R. (Eds.) The Dalmarnock Fire Tests: Experiments and Modelling, School of Engineering and Electronics; University of Edinburgh: Edinburgh, UK, 2007. [Google Scholar]
- Walton, W.D.; Thomas, P.H. The SFPE Handbook of Fire Protection Engineering, 2nd ed.; NFPA: Quincy, MA, USA, 1995; pp. 134–147. [Google Scholar]
- McGrattan, K. Fire Dynamics Simulator (Version 5) Technical Reference Guide; National Institute of Standards and Technology: Washington, DC, USA, 2009.
- Hu, L.H.; Fong, N.K.; Yang, L.Z.; Chow, W.K.; Li, Y.Z.; Huo, R. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: Fire dynamics simulator comparisons with measured data. J. Hazard. Mater. 2007, 140, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.G.; Quintiere, J.G. Numerical simulation of axi-symmetric fire plumes: Accuracy and limitations. Fire Saf. J. 2003, 38, 467–492. [Google Scholar] [CrossRef]
- Shen, T.S.; Huang, Y.H.; Chien, S.W. Using fire dynamic simulation (FDS) to reconstruct an arson fire scene. Build. Environ. 2008, 43, 1036–1045. [Google Scholar] [CrossRef]
- Shi, C.L.; Zhong, M.H.; Fu, T.R.; He, L.; Huo, R. An investigation on spill plume temperature of large space building fires. J. Loss Prev. Process. Ind. 2009, 22, 76–85. [Google Scholar] [CrossRef]
- Zhang, G.W. Performance-Based Fire Protection Design of Large-Space Structures Exposed to Localized Fire. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2015. [Google Scholar]
- Li, J.Y. Study on Smoke Temperature Rise of Large Space Buildings Based on Fire Randomness. Master’s Thesis, China University of Mining and Technology, Beijing, China, 2017. [Google Scholar]
- Yi, L.; Huo, R.; Zhang, J.Y.; Li, Y.Z.; Zhang, H.P. Characteristics of heat release rate of diesel oil pool fire. J. Combust. Sci. Technol. 2006, 12, 164–168. [Google Scholar]
- Bartlett, A.I.; Hadden, R.M.; Bisby, L.A. A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technol. 2019, 55, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Qi, Y.Q. Comparative study on combustion properties of species wood in timber construction. J. For. Eng. 2016, 1, 51–57. [Google Scholar]
- Du, Y.; Li, G.Q. A new temperature—Time curve for fire-resistance analysis of structures. Fire Saf. J. 2012, 54, 113–120. [Google Scholar] [CrossRef]
- Jones, W.W.; Peacock, R.D.; Forney, G.P.; Reneke, P.A. CFAST—Consolidated Model of Fire Growth and Smoke Transport, Technical Reference Guide; National Institute of Standards and Technology: Washington, DC, USA, 2005.
- Harmathy, T.Z.; Mehaffey, J.R. Design of buildings for prescribed levels of structural fire safety. ASTM Spec. Tech. Publ. 1985, 1, 160–175. [Google Scholar]
- Fan, S.G.; Shu, G.P.; She, G.J.; Richard Liew, J.Y. Computational method and numerical simulation of temperature field for large-space steel structures in fire. Adv. Steel Constr. 2014, 10, 151–178. [Google Scholar]
- Yarin, L.P. The Pi-Theorem: Applications to Fluid Mechanics and Heat and Mass Transfer; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- EN 1991-1-2, Eurocode 1: Actions of Structures–Part 1–2: General Actions–Actions on Structures Exposed to Fire; European Committee for Standardization: Geneva, Switzerland, 2002.
- Walton, W.D.; Thomas, P.H.; Ohmiya, Y. Estimating temperatures in compartment fires. In SFPE Handbook of Fire Protection Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 996–1023. [Google Scholar]
- Thomas, P.H.; Webster, C.T.; Raftery, M.M. Some experiments on buoyant diffusion flames. Combust. Flame 1961, 5, 359–367. [Google Scholar] [CrossRef]
- Zukoski, E.E.; Kubota, T.; Cetegen, B. Entrainment in fire plumes. Fire Saf. J. 1980, 3, 107–121. [Google Scholar] [CrossRef]
- McCaffrey, B.J. Momentum implications for buoyant diffusion flames. Combust. Flame 1983, 52, 149–167. [Google Scholar] [CrossRef]
- Heskestad, G. Engineering relations for fire plumes. Fire Saf. J. 1984, 7, 25–32. [Google Scholar] [CrossRef]
Factors | Levels | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Space areas, A (m2) | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 |
Space heights, H (m) | 6 | 9 | 12 | 15 | 18 | 20 |
Heat release rate, Q (MW) | 2 | 5 | 10 | 15 | 20 | 25 |
Fire growth type [48] | Constant | Slow | Medium | Fast | Ultra-fast |
H/m | γH/m | D/m | h/m | |||||
---|---|---|---|---|---|---|---|---|
2 MW | 5 MW | 10 MW | 15 MW | 20 MW | 25 MW | |||
6 | 4.8 | 21.4 | 18.6 | 18.1 | 18.4 | 18.8 | 19.2 | 2.6 |
9 | 7.2 | 30.9 | 26.2 | 24.7 | 24.5 | 24.7 | 25.0 | 3.4 |
12 | 9.6 | 40.5 | 33.7 | 31.3 | 30.7 | 30.6 | 30.7 | 4.2 |
15 | 12 | 50.1 | 41.3 | 37.9 | 36.8 | 36.4 | 36.3 | 4.7 |
18 | 14.4 | 59.7 | 48.8 | 44.5 | 43.0 | 42.3 | 42.0 | 5.0 |
20 | 16 | 66.1 | 53.8 | 48.8 | 47.1 | 46.2 | 45.8 | 5.3 |
Q/MW | D*/m | Grid Size (Δx = Δy = Δz)/m | |||||
---|---|---|---|---|---|---|---|
Highly Sensitive Area | R* | Sub-Sensitive Area | R* | Non-Sensitive Area | R* | ||
2 | 1.2 | 0.125 × 0.125 × 0.125 | 0.10 | 0.25 × 0.25 × 0.25 | 0.21 | 0.5 × 0.5 × 0.5 | 0.42 |
5 | 1.7 | 0.125 × 0.125 × 0.125 | 0.07 | 0.25 × 0.25 × 0.25 | 0.15 | 0.5 × 0.5 × 0.5 | 0.29 |
10 | 2.3 | 0.125 × 0.125 × 0.125 | 0.05 | 0.25 × 0.25 × 0.25 | 0.11 | 0.5 × 0.5 × 0.5 | 0.22 |
15 | 2.7 | 0.125 × 0.125 × 0.125 | 0.05 | 0.25 × 0.25 × 0.25 | 0.09 | 0.5 × 0.5 × 0.5 | 0.19 |
20 | 3.0 | 0.125 × 0.125 × 0.125 | 0.04 | 0.25 × 0.25 × 0.25 | 0.08 | 0.5 × 0.5 × 0.5 | 0.17 |
25 | 3.3 | 0.125 × 0.125 × 0.125 | 0.04 | 0.25 × 0.25 × 0.25 | 0.08 | 0.5 × 0.5 × 0.5 | 0.15 |
Q (MW) | 2 | 5 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|---|
k | 6.90 | 7.38 | 7.68 | 8.12 | 8.63 | 9.02 |
η | 0.12 | 0.07 | 0.02 | 0.04 | 0.08 | 0.10 |
Fire Growth Type | Slow | Medium | Fast | Ultra-Fast |
---|---|---|---|---|
η | 0.37 | 0.66 | 1.02 | 1.65 |
Space Area (m2) | Space Height (m) | HRR (MW) | |||||
---|---|---|---|---|---|---|---|
2 | 5 | 10 | 15 | 20 | 25 | ||
1000/ 2000/ 3000 | 6 | ✘ | ✔ | ✔ | ✔ | ✔ | ✔ |
9 | ✘ | ✘ | ✔ | ✔ | ✔ | ✔ | |
12 | ✘ | ✘ | ✘ | ✔ | ✔ | ✔ | |
15 | ✘ | ✘ | ✘ | ✘ | ✔ | ✔ | |
18 | ✘ | ✘ | ✘ | ✘ | ✘ | ✔ | |
20 | ✘ | ✘ | ✘ | ✘ | ✘ | ✘ | |
4000/ 5000/ 6000 | 6 | ✘ | ✔ | ✔ | ✔ | ✔ | ✔ |
9 | ✘ | ✘ | ✔ | ✔ | ✔ | ✔ | |
12 | ✘ | ✘ | ✘ | ✔ | ✔ | ✔ | |
15 | ✘ | ✘ | ✘ | ✘ | ✔ | ✔ | |
18 | ✘ | ✘ | ✘ | ✘ | ✘ | ✘ | |
20 | ✘ | ✘ | ✘ | ✘ | ✘ | ✘ |
Space Area (m2) | Space Height (m) | HRR (MW) | |||
---|---|---|---|---|---|
1000 | 6 | 2.5 | 3.0 | 3.5 | 4.0 |
9 | 6.0 | 7.0 | 8.0 | 9.0 | |
12 | 11 | 12 | 13 | 14 | |
15 | 16 | 17 | 18 | 19 | |
18 | 21 | 22 | 23 | 24 | |
4000 | 6 | 2.5 | 3.0 | 3.5 | 4.0 |
9 | 6.0 | 7.0 | 8.0 | 9.0 | |
12 | 11 | 12 | 13 | 14 | |
15 | 16 | 17 | 18 | 19 | |
18 | 21 | 22 | 23 | 24 |
Space Area (m2) | Space Height (m) | HRR (MW)/Tmax (°C) | ||||
---|---|---|---|---|---|---|
1000 | 6 | 2.0/260/✘ | 2.5/310/✔ | 3.0/320/✔ | 3.5/330/✔ | 4.0/350/✔ |
9 | 5.0/280/✘ | 6.0/295/✘ | 7.0/310/✔ | 8.0/340/✔ | 9.0/370/✔ | |
12 | 10/300/✘ | 11/305/✔ | 12/310/✔ | 13/320/✔ | 14/330/✔ | |
15 | 15/305/✘ | 16/310/✘ | 17/320/✔ | 18/330/✔ | 19/340/✔ | |
18 | 20/295/✘ | 21/300/✘ | 22/305/✘ | 23/310/✘ | 24/320/✔ | |
4000 | 6 | 2.0/280/✘ | 2.5/320/✔ | 3.0/340/✔ | 3.5/360/✔ | 4.0/380/✔ |
9 | 5.0/250/✘ | 6.0/270/✘ | 7.0/300/✔ | 8.0/330/✔ | 9.0/360/✔ | |
12 | 10/290/✘ | 11/310/✔ | 12/320/✔ | 13/330/✔ | 14/340/✔ | |
15 | 15/290/✘ | 16/295/✘ | 17/300/✘ | 18/310/✔ | 19/330/✔ | |
18 | 20/280/✘ | 21/285/✘ | 22/290/✘ | 23/295/✘ | 24/300/✘ |
Space Areas (m2) | Space Heights (m) | ||||
---|---|---|---|---|---|
6 | 9 | 12 | 15 | 18 | |
1000 | (260,310] | (295,310] | (300,305] | (310,320] | (310,320] |
4000 | (280,320] | (270,300] | (290,310] | (300,310] | >300 |
1000 ∩ 4000 | (280,310] | (295,300] | (300,305] | (310,310] | (310,320] |
Space Areas (m2) | Space Heights (m) | tf (min)/Tf (°C) | ||||
---|---|---|---|---|---|---|
HRR (MW) | ||||||
5 | 10 | 15 | 20 | 25 | ||
1000 | 6 | 7.7/500 | 2.7/700 | 1.5/800 | 1.2/900 | 0.8/980 |
9 | – | 8.3/450 | 4.2//580 | 2.8/700 | 2.2/730 | |
12 | – | – | 15/400 | 5.8/550 | 4.0/600 | |
15 | – | – | – | 23/380 | 10/450 | |
18 | – | – | – | – | 50/350 | |
2000 | 6 | 12/400 | 4.2/720 | 2.3/800 | 1.7/900 | 1.0/900 |
9 | – | 13/470 | 5.8/600 | 4.2/660 | 3.0/700 | |
12 | – | – | 108/350 | 9.2/500 | 5.5/550 | |
15 | – | – | – | 33/370 | 14/420 | |
18 | – | – | – | – | 80/330 | |
3000 | 6 | 11/410 | 5.2/700 | 3.5/850 | 2.7/950 | 2.2/990 |
9 | – | 17/450 | 7.8/570 | 5.2/650 | 3.8/750 | |
12 | – | – | 20/400 | 12/470 | 7.0/530 | |
15 | – | – | – | 43/380 | 18/400 | |
18 | – | – | – | – | 113/340 | |
4000 | 6 | 14/425 | 6.3/690 | 4.0/850 | 2.8/900 | 3.3/950 |
9 | – | 21/430 | 9.2/540 | 6.2/650 | 4.7/690 | |
12 | – | – | 36/370 | 14/470 | 8.8/560 | |
15 | – | – | – | 55/400 | 22/410 | |
5000 | 6 | 16/430 | 6.5/680 | 4.8/830 | 3.5/940 | 4.2/950 |
9 | – | 25/420 | 9.7/580 | 6.7/650 | 5.0/700 | |
12 | – | – | 39/350 | 17/440 | 10/500 | |
15 | – | – | – | 67/380 | 28/400 | |
6000 | 6 | 17/380 | 8.0/630 | 4.5/890 | 4.0/970 | 4.6/960 |
9 | – | 27/420 | 11/550 | 7.8/600 | 5.3/760 | |
12 | – | – | 27/380 | 20/430 | 12/480 | |
15 | – | – | – | 80/360 | 30/400 |
Fire Growth Type | Slow | Medium | Fast | Ultra-Fast |
---|---|---|---|---|
α (kW/s2) | 0.0029 | 0.0117 | 0.0469 | 0.1876 |
μ | 157 | 188 | 300 | 377 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, L. Research on Flashover Prediction Method of Large-Space Timber Structures in a Fire. Materials 2021, 14, 5515. https://doi.org/10.3390/ma14195515
Zhang Y, Wang L. Research on Flashover Prediction Method of Large-Space Timber Structures in a Fire. Materials. 2021; 14(19):5515. https://doi.org/10.3390/ma14195515
Chicago/Turabian StyleZhang, Yongwang, and Lu Wang. 2021. "Research on Flashover Prediction Method of Large-Space Timber Structures in a Fire" Materials 14, no. 19: 5515. https://doi.org/10.3390/ma14195515
APA StyleZhang, Y., & Wang, L. (2021). Research on Flashover Prediction Method of Large-Space Timber Structures in a Fire. Materials, 14(19), 5515. https://doi.org/10.3390/ma14195515