Polystyrene-Fe3O4-MWCNTs Nanocomposites for Toluene Removal from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Polystyrene:MWCNTs:Magnetite Nanocomposites (PS:MWCNTs:Fe)
2.2. Adsorption Experimental Work
3. Results and Discussion
3.1. Characterization Results
3.1.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.1.2. X-ray Diffraction Investigations
3.1.3. Raman Spectroscopy Investigations
3.1.4. Scanning and Transmission Electron Microscopy Investigations
3.1.5. Determination of Surface Area and Pore Volume
3.2. Adsorption Investigations
3.2.1. Effect of Contact Time
3.2.2. Effect of Sorbent Dose
3.2.3. Effect of Solution pH
3.2.4. Effect of the Solution Temperature
3.3. Kinetic Investigations
3.4. Equilibrium Adsorption Study
3.5. Sorption Mechanism of Toluene in Water
- π–π interactions between CNT aromatic rings and/or polystyrene rings and the aromatic rings of toluene can occur.
- Hydrogen bonding could occur between the hydrogen atom from toluene and the oxygen atom from the metal oxides.
- CH–π interactions could occur between the hydrogen atom from toluene and the aromatic rings of the polystyrene or MWCNTs.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neelamegan, H.; Yang, D.K.; Lee, G.J.; Anandan, S.; Wu, J.J. Synthesis of magnetite nanoparticles anchored cellulose and lignin-based carbon nanotube composites for rapid oil spill cleanup. Mater. Today Commun. 2020, 22, 100746. [Google Scholar] [CrossRef]
- Pethsangave, D.A.; Wadekar, P.H.; Khose, R.V.; Some, S. Superhydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures. Polym. Test. 2020, 90, 106743. [Google Scholar] [CrossRef]
- Anushree, C.; Krishna, D.N.G.; Philip, J. Oil-absorbent MnOx capped iron oxide nanoparticles: Synthesis, characterization and applications in oil recovery. J. Mol. Liq. 2020, 320, 114324. [Google Scholar] [CrossRef]
- Periasamy, A.P.; Wu, W.P.; Ravindranath, R.; Roy, P.; Lin, G.L.; Chang, H.T. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery. Mar. Pollut. Bull. 2017, 114, 888–895. [Google Scholar] [CrossRef]
- Zareei Pour, F.; Sabzehmeidani, M.M.; Karimi, H.; Madadi Avargani, V.; Ghaedi, M. Superhydrophobic–superoleophilic electrospun nanofibrous membrane modified by the chemical vapor deposition of dimethyl dichlorosilane for efficient oil–water separation. J. Appl. Polym. Sci. 2019, 136, 47621. [Google Scholar] [CrossRef]
- Tayler, A.M.; Farouq, R.; Mohamed, O.A.; Tony, M.A. Oil spill clean-up using combined sorbents: A comparative investigation and design aspects. Int. J. Environ. Anal. Chem. 2020, 100, 311–323. [Google Scholar]
- Wei, Y.; Qi, H.; Gong, X.; Zhao, S. Specially wettable membranes for oil-water separation. Adv. Mater. Interfaces 2018, 5, 1800576. [Google Scholar] [CrossRef]
- Mohammadi, T.; Kazemimoghadam, M.; Saadabadi, M. Modeling of membrane fouling and flux decline in reverse osmosis during the separation of oil in water emulsions. Desalination 2003, 157, 369–375. [Google Scholar] [CrossRef]
- Kukkar, D.; Rani, A.; Kumar, V.; Younis, S.A.; Zhang, M.; Lee, S.S.; Kim, K.H. Recent advances in carbon nanotube sponge–based sorption technologies for mitigation of marine oil spills. J. Colloid Interface Sci. 2020, 570, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Kamgar, A.; Hassanajili, S. Super-hydrophobic Fe3O4@ SiO2@ MPS nanoparticles for soil remediation: The influence of pH and concentration on clustering phenomenon and oil sorption. J. Mol. Liq. 2020, 315, 113709. [Google Scholar] [CrossRef]
- Parmar, K.R.; Dora, K.; Pant, K.K.; Roy, S. An ultra-light flexible aerogel-based on methane derived CNTs as a reinforcing agent in silica-CMC matrix for efficient oil adsorption. J. Hazard. Mater. 2019, 375, 206–215. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Lin, Z.; Wang, Y.; Li, Y.; Liu, S.; Yang, X. Three-dimensional α-Fe2O3/amino-functionalization carbon nanotube sponge for adsorption and oxidative removal of tetrabromobisphenol A. Sep. Purif. Technol. 2019, 211, 359–367. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Dai, M.; Gong, Q.; Dang, Z. Ag/AgCl/MIL-101(Fe) Catalyzed Degradation of Methylene Blue under Visible Light Irradation. Materials 2019, 12, 1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.Z.; Zhong, L.B.; Dou, S.; Shao, Z.D.; Liu, Q.; Zheng, Y.M. Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. Environ. Int. 2019, 128, 37–45. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Ke, B.; He, Z.; Cui, Y.; Pan, Z.; Su, J. Magnetic multi-walled carbon nanotubes modified with polyaluminium chloride for removal of humic acid from aqueous solution. J. Mol. Liq. 2019, 279, 241–250. [Google Scholar] [CrossRef]
- Ritchie, A.W.; Cox, H.J.; Barrientos-Palomo, S.N.; Sharples, G.J.; Badyal, J.P.S. Bioinspired multifunctional polymer–nanoparticle–surfactant complex nanocomposite surfaces for antibacterial oil–water separation. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 352–359. [Google Scholar] [CrossRef]
- Hu, X.; Zou, C.; Zou, X. The formation of supramolecular carbon nanofibers via amidation reaction on the surface of amino single walled carbon nanotubes for selective adsorption of organic pollutants. J. Colloid. Interface. Sci. 2019, 542, 112–122. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Tang, W.; Xia, D.; Liang, Y.; Li, X. Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms. Chemosphere 2019, 214, 79–84. [Google Scholar] [CrossRef]
- Tan, X.; Wang, H.-M.D.; Zang, D.; Wu, L.; Liu, F.; Cao, G.; Xu, Y.; Ho, S.-H. Superhydrophobic/superoleophilic corn straw as an eco-friendly oil sorbent for the removal of spilled oil. Clean Technol. Environ. Policy 2021, 23, 145–152. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, Q.; Connell, D.W.; Yu, G. Titania/carbon nanotube composite (TiO2/CNT) and its application for removal of organic pollutants. Clean Technol. Environ. Policy 2013, 15, 871–880. [Google Scholar] [CrossRef]
- Sobhanardakani, S.; Zandipak, R. Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technol. Environ. Policy 2017, 19, 1913–1925. [Google Scholar] [CrossRef]
- Kirti, S.; Bhandari, V.M.; Jena, J.; Sorokhaibam, L.G.; Bhattacharyya, A.S. Exploiting functionalities of biomass in nanocomposite development: Application in dye removal and disinfection along with process intensification. Clean Technol. Environ. Policy 2018, 20, 981–994. [Google Scholar] [CrossRef]
- Parangusan, H.; Ponnamma, D.; Hassan, M.K.; Adham, S.; Al-Maadeed, M.A.A. Designing Carbon Nanotube-Based Oil Absorbing Membranes from Gamma Irradiated and Electrospun Polystyrene Nanocomposites. Materials 2019, 12, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rekos, K.; Kampouraki, Z.-C.; Sarafidis, C.; Samanidou, V.; Deliyanni, E. Graphene Oxide Based Magnetic Nanocomposites with Polymers as Effective Bisphenol–A Nanoadsorbents. Materials 2019, 12, 1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Pan, Y.; Li, L. Fabrication of superhydrophobic hybrids from multiwalled carbon nanotubes and poly (vinylidene fluoride). Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 47–52. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Moustafa, Y.M.; Hamdy, A.; Killa, H.M.; Ghanem, R.T.M.; Morsi, R.E. Preparation and characterization of sulfonated polystyrene / magnetite nanocomposites for organic dye adsorption. Egypt. J. Pet. 2018, 27, 403–413. [Google Scholar] [CrossRef]
- Mergen, Ö.B.; Umut, E.; Arda, E.; Kara, S. A comparative study on the AC/DC conductivity, dielectric and optical properties of polystyrene/graphene nanoplatelets (PS/GNP) and multi-walled carbon nanotube (PS/MWCNT) nanocomposites. Polym. Test. 2020, 90, 106682. [Google Scholar] [CrossRef]
- Khan, T.A.; Nazir, M.; Khan, E.A.; Riaz, U. Multiwalled carbon nanotube–polyurethane (MWCNT/PU) composite adsorbent for saffron T and Pb (II) removal from aqueous solution: Batch and fixed-bed studies. J. Mol. Liq. 2015, 212, 467–479. [Google Scholar] [CrossRef]
- Saadati, J.; Pakizeh, M. Separation of oil/water emulsion using a new PSf/pebax/F-MWCNT nanocomposite membrane. J. Taiwan Inst. Chem. Eng. 2017, 71, 265–276. [Google Scholar] [CrossRef]
- Lv, C.; Wang, H.; Liu, Z.; Wang, C.; Zhang, W.; Li, M.; Zhu, Y. Fabrication of durable fluorine-free polyphenylene sulfide/silicone resin composite superhydrophobic coating enhanced by carbon nanotubes/graphene fillers. Prog. Org. Coat. 2019, 134, 1–10. [Google Scholar] [CrossRef]
- Lee, R.S.; Chen, W.H.; Lin, J.H. Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer 2011, 52, 2180–2188. [Google Scholar] [CrossRef]
- Choudhury, A.; Kar, P. Doping effect of carboxylic acid group functionalized multi-walled carbon nanotube on polyaniline. Compos. Part B Eng. 2011, 42, 1641–1647. [Google Scholar] [CrossRef]
- Yang, Z.F.; Li, L.Y.; Hsieh, C.T.; Juang, R.S. Co-precipitation of magnetic Fe3O4 nanoparticles onto carbon nanotubes for removal of copper ions from aqueous solution. J. Taiwan Inst. Chem. Eng. 2018, 82, 56–63. [Google Scholar] [CrossRef]
- Moatmed, S.M.; Khedr, M.H.; El-dek, S.I.; Kim, H.Y.; El-Deen, A.G. Highly efficient and reusable superhydrophobic/superoleophilic polystyrene @ Fe3O4 nanofiber membrane for high-performance oil/water separation. J. Environ. Chem. Eng. 2019, 7, 103508. [Google Scholar] [CrossRef]
- Al-Jammal, N.; Abdullah, T.A.; Juzsakova, T.; Zsirka, B.; Cretescu, I.; Vágvölgyi, V.; Sebestyén, V.; Le Phuoc, C.; Rasheed, R.T.; Domokos, E. Functionalized carbon nanotubes for hydrocarbon removal from water. J. Environ. Chem. Eng. 2020, 8, 103570. [Google Scholar] [CrossRef]
- Sen, P.; Suresh, K.; Kumar, R.V.; Kumar, M.; Pugazhenthi, G. A simple solvent blending coupled sonication technique for synthesis of polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites: Effect of modified MWCNT content. J. Sci. Adv. Mater. Dev. 2016, 1, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Das, R.; Bee, A.H.S.; Eaqub, A.M.; Ramakrishna, S.; Yongzhi, W. Carbon nanotubes characterization by X-ray powder diffraction—A review. Curr. Nanosci. 2015, 11, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Salam, M.A.; Burk, R. Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arab. J. Chem. 2017, 10, S921–S927. [Google Scholar] [CrossRef] [Green Version]
- Loh, K.S.; Lee, Y.H.; Musa, A.; Salmah, A.A.; Zamri, I. Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors 2008, 8, 5775–5791. [Google Scholar] [CrossRef]
- Liao, M.H.; Chen, D.H. Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnol. Lett. 2001, 23, 1723–1727. [Google Scholar] [CrossRef]
- Bokobza, L.; Zhang, J. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett. 2012, 6, 601–608. [Google Scholar] [CrossRef]
- Bankole, M.T.; Abdulkareem, A.S.; Mohammed, I.A.; Ochigbo, S.S.; Tijani, J.O.; Abubakre, O.K.; Roos, W.D. Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci. Rep. 2019, 9, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdrojek, M.; Gebicki, W.; Jastrzebski, C.; Melin, T.; Huczko, A. Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy. Solid State Phenom. 2004, 99, 265–268. [Google Scholar] [CrossRef]
- Birch, M.E.; Ruda-Eberenz, T.A.; Chai, M.; Andrews, R.; Hatfield, R.L. Properties that influence the specific surface areas of carbon nanotubes and nanofibers. Ann. Occup. Hyg. 2013, 57, 1148–1166. [Google Scholar] [PubMed] [Green Version]
- Anjum, H.; Johari, K.; Gnanasundaram, N.; Ganesapillai, M.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. A review on adsorptive removal of oil pollutants (BTEX) from wastewater using carbon nanotubes. J. Mol. Liq. 2019, 277, 1005–1025. [Google Scholar] [CrossRef]
- Da Costa, J.S.; Bertizzolo, E.G.; Bianchini, D.; Fajardo, A.R. Adsorption of benzene and toluene from aqueous solution using a composite hydrogel of alginate-grafted with mesoporous silica. J. Hazard. Mater. 2021, 418, 126405. [Google Scholar] [CrossRef]
- Abbas, A.; Abussaud, B.A.; Ihsanullah Al-Baghli, N.A.H.; Redhwi, H.H. Adsorption of toluene and paraxylene from aqueous solution using pure and iron oxide impregnated carbon nanotubes: Kinetics and isotherms study. Bioinorg. Chem. Appl. 2017, 2017, 2853925. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Lu, C.; Hu, S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2010, 353, 83–91. [Google Scholar] [CrossRef]
- De Souza, S.M.D.A.G.U.; da Luz, A.D.; da Silva, A.; de Souza, A.A.U. Removal of mono-and multicomponent BTX compounds from effluents using activated carbon from coconut shell as the adsorbent. Ind. Eng. Chem. Res. 2012, 51, 6461–6469. [Google Scholar] [CrossRef]
- Mohammed, J.; Nasri, N.S.; Zaini, M.A.A.; Hamza, U.D.; Ani, F.N. Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH3. Int. Biodeterior. Biodegrad. 2015, 102, 245–255. [Google Scholar] [CrossRef]
- Qin, G.; Yao, Y.; Wei, W.; Zhang, T. Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water. Appl. Surf. Sci. 2013, 280, 806–811. [Google Scholar] [CrossRef]
- Fatimah, I.; Huda, T. Preparation of cetyltrimethylammonium intercalated Indonesian montmorillonite for adsorption of toluene. Appl. Clay Sci. 2013, 74, 115–120. [Google Scholar] [CrossRef]
- Srivastava, I.; Mishra, S.; Singh, P.K.; Gupta, T.; Sankararamakrishnan, N. Fast and efficient removal of Toluene, Ethylbenzene and O-Xylene from aqueous phase by functionalized carbon micro/nano composites. J. Environ. Chem. Eng. 2018, 6, 4917–4926. [Google Scholar] [CrossRef]
- Bedin, S.; Oliveira, M.; Vieira, M.; Vieira, M.; Silva, M.; Santos, O. Adsorption of toluene in batch system in natural clay and organoclay. Chem. Eng. Trans. 2013, 32, 313–318. [Google Scholar]
- Asadi, F.; Zerafat, M. Adsorption of toluene fromaqueous solutions using clay-based nanostructures. Sep. Sci. Technol. 2016, 51, 569–574. [Google Scholar] [CrossRef]
- Asenjo, N.G.; Álvarez, P.; Granda, M.; Blanco, C.; Santamaría, R.; Menéndez, R. High performance activated carbon for benzene/toluene adsorption from industrial wastewater. J. Hazard. Mater. 2011, 192, 1525–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Jinghui, D.; Peizhe, S.; Jiashu, L.; Yi, J.; Norihide, N.; Zhi, Q.; Hiroaki, T.; Yongkui, Y. Nanomaterials for Treating Emerging Contaminants in Water by Adsorption and Photocatalysis: Systematic Review and Bibliometric Analysis. Sci. Total Environ. 2018, 627, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Kajjumba, G.W. Modelling of adsorption kinetic processes—Errors. In Theory and Application; Emik, S., Ed.; InTechOpen: Rijeka, Croatia, 2019; Chapter 10. [Google Scholar]
- Fei, L.; Jingwei, R.; Rijie, W.; Yanfei, L.; Xiaoxia, Y. Equilibrium and Kinetic Studies on the Adsorption of Thiophene and Benzothiophene onto NiCeY Zeolites. RSC Adv. 2017, 7, 23011–23020. [Google Scholar] [CrossRef] [Green Version]
- Abedi, Z.; Assadi, A.; Farahmandkia, Z.; Mehrasebi, M.R. The effect of natural organic compounds on the adsorption of toluene and ethylene benzene on MWCNT. J. Environ. Health Sci. Eng. 2019, 17, 1055–1065. [Google Scholar] [CrossRef]
- Leili, M.; Edris, B.; Meissam, N.; Alireza, A.-M.; Farahnaz, B.; Davoud, B. Adsorptive Removal of Benzene and Toluene from Aqueous Environments by Cupric Oxide Nanoparticles: Kinetics and Isotherm Studies. J. Chem. 2017, 2017, 1–10. [Google Scholar]
Compound | Vibrations (cm−1) | Explanation |
---|---|---|
Fresh MWCNTs | 3425, 1625 cm−1 | O–H Stretching and bending of water, respectively |
2925 cm−1 | C–H Stretching of aromatic | |
2845 cm−1 | C–H Stretching of branching | |
1460 cm−1 | C=C Stretching of aromatic | |
1395 cm−1 | C–C Stretching of MWCNTs | |
Ox-MWCNTs | 3420 cm−1 | O–H Stretching of –COOH group |
1490 cm−1 | C=O Stretching of –COOH group | |
1400 cm−1 | C–O Stretching of –COOH group | |
Fe-MWCNTs | 720 cm−1 | Fe–O Stretching of metal oxide with carboxyl group in MWCNTs |
Ads/PS:MWCNTs:Fe | 2925 cm−1 | C–H Stretching of aromatic ring |
2845 cm−1 | C–H Stretching of –CH3 group | |
1035 cm−1 | C–H bending in-plane | |
545 cm−1 | C–H bending in out-of-plane |
Sample | SBET m2/g | V1.7–300 nm, cm3/g | Smicro m2/g | Vmicro, cm3/g | Dav, nm BJH | |
---|---|---|---|---|---|---|
1 | MWCNTs | 161 | 0.7932 | 22.86 | 0.0096 | 17.9 |
2 | Ox-MWCNTs | 146 | 1.1142 | 13.9 | 0.0053 | 26.0 |
3 | Fe-MWCNTs | 233 | 0.5737 | 0 | 0 | 8.5 |
4 | PS:MWCNTs:Fe | 136 | 0.3372 | 0 | 0 | 8.5 |
5 | PS:MWCNTs:Fe Ads. | 129 | 0.3075 | 0 | 0 | 7.6 |
Adsorbent Used | Oil Pollutant | Conditions | Dose | Capacity | Reference |
---|---|---|---|---|---|
mg | (mg/g) | ||||
Activated carbon | Toluene | 100 mg/L, pH 6.9 | 10 | 501 | [46] |
GEL-SBA15 | Toluene | 650 mg/L, pH 7 | 10 | 597 | [47] |
CNTs-iron oxide | Toluene | 100 mg/L, pH 7 | 50 | 381 | [48] |
CNTs-NaOCl | Toluene | 20–200 mg/L, pH 7, T 25 °C | Oct-50 | 285 | [49] |
Modified activated carbon | Toluene | 50 mg/L, pH 6, T 23 °C | 50 | 126 | [50] |
Microemulsion/MWCNTs | Kerosene | 500 mg/L, 25 °C | 10 | 4700 | [30] |
KOH activated coconut shell based carbon treated with NH3 | Toluene | 50–250 mg/L, pH 6, T 30 °C, 115 rpm | 100 | 357 | [51] |
Granule silica aerogel | Phenol | 290 mg/L, pH 4–7, T 25 °C | 500 | 142 | [52] |
Organo-clay CTMA | Toluene | 0.0125–0.25 mg/L | 200 | 58 | [53] |
LCNT-ox | Toluene | 10–100 mg/L, pH 3–9, T 25 °C | 20 | 72 | [54] |
Na-smectite | Toluene | 100 mg/L, pH 6 | - | 410 | [55] |
Porous clay heterostructures (PCH) | Toluene | 10–500 g/L, T 25 ± 2 °C, pH 3–11 | 0.5–4 g/L | 101.1 | [56] |
High-performance activated carbon | Toluene | 175–225 mg/L, T 25 °C, pH 7 | 1200 | [57] | |
PS:MWCNTs-Fe | Toluene | 200 mg/L, T 25 °C, pH 2–10 | 1 to 6 | 1113 | Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, T.A.; Juzsakova, T.; Rasheed, R.T.; Salman, A.D.; Sebestyen, V.; Domokos, E.; Sluser, B.; Cretescu, I. Polystyrene-Fe3O4-MWCNTs Nanocomposites for Toluene Removal from Water. Materials 2021, 14, 5503. https://doi.org/10.3390/ma14195503
Abdullah TA, Juzsakova T, Rasheed RT, Salman AD, Sebestyen V, Domokos E, Sluser B, Cretescu I. Polystyrene-Fe3O4-MWCNTs Nanocomposites for Toluene Removal from Water. Materials. 2021; 14(19):5503. https://doi.org/10.3390/ma14195503
Chicago/Turabian StyleAbdullah, Thamer Adnan, Tatjána Juzsakova, Rashed Taleb Rasheed, Ali Dawood Salman, Viktor Sebestyen, Endre Domokos, Brindusa Sluser, and Igor Cretescu. 2021. "Polystyrene-Fe3O4-MWCNTs Nanocomposites for Toluene Removal from Water" Materials 14, no. 19: 5503. https://doi.org/10.3390/ma14195503
APA StyleAbdullah, T. A., Juzsakova, T., Rasheed, R. T., Salman, A. D., Sebestyen, V., Domokos, E., Sluser, B., & Cretescu, I. (2021). Polystyrene-Fe3O4-MWCNTs Nanocomposites for Toluene Removal from Water. Materials, 14(19), 5503. https://doi.org/10.3390/ma14195503