Influence of the Laser Cladding Parameters on the Morphology, Wear and Corrosion Resistance of WC-Co/NiCrBSi Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Powder
2.2. Laser Cladding
3. Results and Discussions
3.1. Microstructural Characterization of the Feedstock Material
3.2. Microstructural Characterization of Laser Cladded Single Tracks
3.3. Laser Cladding of WC-Co/NiCrBSi Coatings
3.4. Microstructural Characterization of Coatings
3.5. Micro-Hardness and Fe Distribution
3.6. Tribological Properties in Dry Conditions
3.7. Corrosion Behavior of the Cladded Coatings
4. Conclusions
- Using laser cladding and Metco 439 NS feedstock powder, dense coatings with reduced porosity without significant cracks might be manufactured.
- The cladding speed has a major influence on the coating’s microstructure, wear resistance and corrosion behavior.
- Dense and crack free coatings with a desirable distribution of carbides can be produced by optimization of the laser cladding speed. Moreover, hardness increasing was obtained by reducing the dilution between the coating and substrate.
- Due to high temperatures occurred during laser cladding, new phases have formed according to the XRD analysis like Ni3Fe along with M6C and W2C minor phases; by preheating the substrate the formation of amorphous phases was reduced considerably.
- Optimizing the cladding speed proved to increase the wear resistance and enhance the corrosion behavior by controlling the iron content within the coatings.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, J.R. Surface Engineering for Corrosion and Wear Resistance; ASM International: Novelty, OH, USA, 2001. [Google Scholar]
- Bartkowski, D.; Młynarczak, A.; Piasecki, A.; Dudziak, B.; Gościański, M.; Bartkowska, A. Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding. Opt. Laser Technol. 2015, 68, 191–201. [Google Scholar] [CrossRef]
- Pascu, A.; Rosca, J.M.; Stanciu, E.M. Laser cladding: From experimental research to industrial applications. Mater. Today Proc. 2019, 19, 1059–1065. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Z.; Zhao, S.; Wang, Y.; Chen, H.; Lin, X. Effect of a small addition of Ti on the Fe-based coating by laser cladding. Surf. Coat. Technol. 2016, 291, 423–429. [Google Scholar] [CrossRef]
- Weng, Z.; Wang, A.; Wang, Y.; Xiong, D.; Tang, H. Diode laser cladding of Fe-based alloy on ductile cast iron and related interfacial behavior. Surf. Coat. Technol. 2016, 286, 64–71. [Google Scholar] [CrossRef]
- Aghasibeig, M.; Fredriksson, H. Laser cladding of a featureless iron-based alloy. Surf. Coat. Technol. 2012, 209, 32–37. [Google Scholar] [CrossRef]
- Li, Q.-T.; Lei, Y.-P.; Fu, H.-G.; Wu, Z.-W.; Lin, J. Distribution Characteristics and Reinforcing Behavior of (Ti, Nb)C Reinforced Particle in the Coating Fabricated by Laser Rapid Cladding. J. Iron Steel Res. Int. 2016, 23, 124–129. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, Y.; Zou, Z.; Wu, D. Microstructure and properties of Fe-based composite coating by laser cladding Fe–Ti–V–Cr–C–CeO2 powder. Opt. Laser Technol. 2015, 65, 119–125. [Google Scholar] [CrossRef]
- El-Labban, H.F.; Mahmoud, E.R.; Al-Wadai, H. Formation of VC-composite surface layer on high C–Cr bearing tool steel by laser surface cladding. J. Manuf. Process. 2015, 20, 190–197. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, T.; Kovacevic, R. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC. Appl. Surf. Sci. 2017, 410, 225–240. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, Y.; Zou, Z.; Wu, D. Microstructures and properties of low-chromium high corrosion-resistant TiC–VC reinforced Fe-based laser cladding layer. J. Alloys Compd. 2015, 622, 62–68. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Z.; Feng, M.; Liu, Z.; Huang, Z.; Zeng, Y. The effect of TiC/Al2O3 composite ceramic reinforcement on tribo-logical behavior of laser cladding Ni60 alloys coatings. Surf. Coat. Technol. 2016, 291, 222–229. [Google Scholar] [CrossRef]
- Wang, D.; Tian, Z.; Wang, S.; Shen, L.; Liu, Z. Microstructural characterization of Al2O3–13wt.% TiO2 ceramic coatings prepared by squash presetting laser cladding on GH4169 superalloy. Surf. Coat. Technol. 2014, 254, 195–201. [Google Scholar] [CrossRef]
- Shu, D.; Li, Z.; Zhang, K.; Yao, C.; Li, D.; Dai, Z. In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding. Mater. Lett. 2017, 195, 178–181. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, S.; Dai, X.; Lei, J.; Guo, J.; Gu, Z.; Wang, T. Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding. Int. J. Refract. Met. Hard Mater. 2017, 64, 234–241. [Google Scholar] [CrossRef]
- Farahmand, P.; Liu, S.; Zhang, Z.; Kovacevic, R. Laser cladding assisted by induction heating of Ni–WC composite en-hanced by nano-WC and La2O3. Ceram. Int. 2014, 40, 15421–15438. [Google Scholar] [CrossRef]
- Deschuyteneer, D.; Petit, F.; Gonon, M.; Cambier, F. Influence of large particle size—Up to 1.2 mm– and morphology on wear resistance in NiCrBSi/WC laser cladded composite coatings. Surf. Coat. Technol. 2017, 311, 365–373. [Google Scholar] [CrossRef]
- Weng, Z.; Wang, A.; Wu, X.; Wang, Y.; Yang, Z. Wear resistance of diode laser-clad Ni/WC composite coatings at different temperatures. Surf. Coat. Technol. 2016, 304, 283–292. [Google Scholar] [CrossRef]
- Leunda, J.; Sanz, C.; Soriano, C. Laser cladding strategies for producing WC reinforced NiCr coatings inside twin barrels. Surf. Coat. Technol. 2016, 307, 720–727. [Google Scholar] [CrossRef]
- Paul, C.; Alemohammad, H.; Toyserkani, E.; Khajepour, A.; Corbin, S. Cladding of WC–12 Co on low carbon steel using a pulsed Nd:YAG laser. Mater. Sci. Eng. A 2007, 464, 170–176. [Google Scholar] [CrossRef]
- Zhong, M.; Liu, W.; Yao, K.; Goussain, J.-C.; Mayer, C.; Becker, A. Microstructural evolution in high power laser cladding of Stellite 6+WC layers. Surf. Coat. Technol. 2002, 157, 128–137. [Google Scholar] [CrossRef]
- Bartkowski, D.; Bartkowska, A. Wear resistance in the soil of Stellite-6/WC coatings produced using laser cladding method. Int. J. Refract. Met. Hard Mater. 2017, 64, 20–26. [Google Scholar] [CrossRef]
- Nurminen, J.; Näkki, J.; Vuoristo, P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int. J. Refract. Met. Hard Mater. 2009, 27, 472–478. [Google Scholar] [CrossRef]
- Fernández, M.R.; García, A.; Cuetos, J.M.; González, R.; Noriega, A.; Cadena, M. Effect of actual WC content on the re-ciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC. Wear 2015, 324, 80–89. [Google Scholar] [CrossRef]
- Zhoua, S.; Dai, X. Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings. Appl. Surf. Sci. 2010, 256, 4708–4714. [Google Scholar] [CrossRef]
- Farahmand, P.; Kovacevic, R. Laser cladding assisted with an induction heater (LCAIH) of Ni–60%WC coating. J. Mater. Process. Technol. 2015, 222, 244–258. [Google Scholar] [CrossRef]
- Lee, C.; Park, H.; Yoo, J.; Lee, C.; Woo, W.; Park, S. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr. Appl. Surf. Sci. 2015, 345, 286–294. [Google Scholar] [CrossRef]
- Amado, J.; Montero, J.; Tobar, M.; Yáñez, A. Laser Cladding of Ni-WC Layers with Graded WC Content. Phys. Procedia 2014, 56, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Stanciu, E.M.; Pascu, A.; Ţierean, M.H.; Voiculescu, I.; Roată, I.C.; Croitoru, C.; Hulka, I. Dual Coating Laser Cladding of NiCrBSi and Inconel 718. Mater. Manuf. Process. 2016, 31, 1556–1564. [Google Scholar] [CrossRef]
- Staicu, A.R.; Iovanas, R.; Iovanas, D.M.; Pascu, A.; Pop, A. Laser cladding of Ni based CW composite powder. Metal. Int. 2013, 6, 147–150. [Google Scholar]
- Singh, G.; Kaur, M.; Upadhyaya, R. Wear and Friction Behavior of NiCrBSi Coatings at Elevated Temperatures. J. Therm. Spray Technol. 2019, 28, 1081–1102. [Google Scholar] [CrossRef]
- Guo, H.; Li, B.; Lu, C.; Zhou, Q.; Jia, J. Effect of WC–Co content on the microstructure and properties of NiCrBSi composite coatings fabricated by supersonic plasma spraying. J. Alloys Compd. 2019, 789, 966–975. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Xu, B.; Zhang, G. Characterization of microstructure and rolling contact fatigue performance of NiCrBSi/WC–Ni composite coatings prepared by plasma spraying. Surf. Coat. Technol. 2015, 261, 60–68. [Google Scholar] [CrossRef]
- Amado, J.M.; Tobar, M.J.; Alvarez, J.C.; Lamas, J.; Yáñez, A. Laser cladding of tungsten carbides (Spherotene®) hardfacing alloys for the mining and mineral industry. Appl. Surf. Sci. 2009, 255, 5553–5556. [Google Scholar] [CrossRef]
- Vostřák, M.; Houdková, Š.; Bystriansky, M.; Česánek, Z. The influence of process parameters on structure and abrasive wear resistance of laser clad WC-NiCrBSi coatings. Mater. Res. Express 2018, 5, 096522. [Google Scholar] [CrossRef]
- Bai, Q.; Ouyang, C.; Zhao, C.; Han, B.; Liu, Y. Microstructure and Wear Resistance of Laser Cladding of Fe-Based Alloy Coatings in Different Areas of Cladding Layer. Materials 2021, 14, 2839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Pang, Y.; Yu, M. Effects of WC Particle Types on the Microstructures and Properties of WC-Reinforced Ni60 Composite Coatings Produced by Laser Cladding. Metals 2019, 9, 583. [Google Scholar] [CrossRef] [Green Version]
Chemical Composition | WC-12Co | Ni | Cr | Al | Fe | Si | B | C |
---|---|---|---|---|---|---|---|---|
Element [%] | 50 | balance | 5.8 | 2.8 | 1.4 | 1.1 | 1.3 | 0.3 |
Parameters Track No. | Power [W] | Cladding Speed [cm/min] | Powder Feeding [g/min] | T Preheat [°C] | Ar [L/min] |
---|---|---|---|---|---|
Track 1 | 720 | 15 | 4 | 320 | 14 |
Track 2 | 25 | ||||
Track 3 | 35 | ||||
Track 4 | 45 | ||||
Track 5 | 55 | ||||
Track 6 | 65 | ||||
Track 7 | 75 | ||||
Track 8 | 85 | ||||
Track 9 | 95 | ||||
Track 10 | 105 |
Dimensions and Dilution Track | Wt [mm] | Dt [µm] | Tt [µm] | Am [µm2] | Ac [µm2] | η% |
---|---|---|---|---|---|---|
Track 1 | 2.257 | 399.1 | 781.6 | 794,251.4 | 615,719.36 | 56.33 |
Track 2 | 2.268 | 393.6 | 785.8 | 757,069.93 | 597,623.11 | 55.88 |
Track 3 | 2.217 | 386.2 | 779.3 | 690,433.92 | 613,919.49 | 52.93 |
Track 4 | 2.207 | 381.3 | 771.6 | 653,186.24 | 606,391.36 | 51.85 |
Track 5 | 2.308 | 295 | 760.8 | 417,360.39 | 461,920.95 | 47.46 |
Track 6 | 2.229 | 343.5 | 606.1 | 492,017.64 | 801,300.36 | 38.04 |
Track 7 | 1.801 | 311.6 | 661 | 452,454.7 | 590,101.93 | 43.39 |
Track 8 | 1.633 | 265.8 | 563.9 | 466,151.94 | 432,516.01 | 51.87 |
Track 9 | 1.777 | 224.1 | 349.3 | 174,467.22 | 155,222.13 | 52.91 |
Track 10 | 1.608 | 259.4 | 469.4 | 194,068.92 | 162,457.3 | 54.43 |
Parameter Coating | Power [W] | Cladding Speed [cm/min] | Energy Density [J/mm2] | Powder Feeding [g/min] | T Preheat [°C] | Ar [L/min] |
---|---|---|---|---|---|---|
Coating 1 | 720 | 45 | 80 | 4 | 320 | 14 |
Coating 2 | 55 | 65.4 | ||||
Coating 3 | 65 | 55.3 | ||||
Coating 4 | 75 | 48 | ||||
Coating 5 | 85 | 42.3 |
Parameter Sample | μ | mi [g] | mf [g] | Δm [mg] | Wear Index [mm3/N Km] |
---|---|---|---|---|---|
Sample 1 | 0.557 | 34.689 | 34.687 | 1.46 | 0.125 |
Sample 2 | 0.543 | 39.671 | 39.67 | 1.61 | 0.0528 |
Sample 3 | 0.438 | 35.174 | 35.172 | 1.91 | 0.05 |
Sample 4 | 0.695 | 34.38 | 34.378 | 1.97 | 0.721 |
Sample 5 | 0.600 | 35.405 | 35.403 | 2.65 | 0.735 |
Sample | E [mV] | Icorr [µA/cm2] | Corr. Rate [mm/Year] |
---|---|---|---|
1 | −239.202 | 11.569 | 0.28 |
2 | −231.307 | 11.071 | 0.26 |
3 | −266.21 | 8.056 | 0.18 |
4 | −263.471 | 19.067 | 0.44 |
5 | −257.958 | 17.771 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulka, I.; Uțu, I.D.; Avram, D.; Dan, M.L.; Pascu, A.; Stanciu, E.M.; Roată, I.C. Influence of the Laser Cladding Parameters on the Morphology, Wear and Corrosion Resistance of WC-Co/NiCrBSi Composite Coatings. Materials 2021, 14, 5583. https://doi.org/10.3390/ma14195583
Hulka I, Uțu ID, Avram D, Dan ML, Pascu A, Stanciu EM, Roată IC. Influence of the Laser Cladding Parameters on the Morphology, Wear and Corrosion Resistance of WC-Co/NiCrBSi Composite Coatings. Materials. 2021; 14(19):5583. https://doi.org/10.3390/ma14195583
Chicago/Turabian StyleHulka, Iosif, Ion D. Uțu, Diana Avram, Mircea L. Dan, Alexandru Pascu, Elena M. Stanciu, and Ionuț C. Roată. 2021. "Influence of the Laser Cladding Parameters on the Morphology, Wear and Corrosion Resistance of WC-Co/NiCrBSi Composite Coatings" Materials 14, no. 19: 5583. https://doi.org/10.3390/ma14195583
APA StyleHulka, I., Uțu, I. D., Avram, D., Dan, M. L., Pascu, A., Stanciu, E. M., & Roată, I. C. (2021). Influence of the Laser Cladding Parameters on the Morphology, Wear and Corrosion Resistance of WC-Co/NiCrBSi Composite Coatings. Materials, 14(19), 5583. https://doi.org/10.3390/ma14195583