Spiky Durian-Shaped Au@Ag Nanoparticles in PEDOT:PSS for Improved Efficiency of Organic Solar Cells
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Au@Ag NPs
2.3. Fabrication of OSC Device
2.4. Sample Description and Measurements
3. Results and Discussion
3.1. Morphology Study
3.2. UV-Vis Spectroscopy
3.3. The Current Density–Voltage of OSCs with/without Embedding Au@Ag NPs into the Buffer Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alkhalayfeh, M.A.; Aziz, A.A.; Pakhuruddin, M.Z. An overview of enhanced polymer solar cells with embedded plasmonic nanoparticles. Renew. Sustain. Energy Rev. 2021, 141, 110726. [Google Scholar] [CrossRef]
- Tong, Y.; Xiao, Z.; Du, X.; Zuo, C.; Li, Y.; Lv, M.; Yuan, Y.; Yi, C.; Hao, F.; Hua, Y.; et al. Progress of the key materials for organic solar cells. Sci. China Ser. B Chem. 2020, 63, 758–765. [Google Scholar] [CrossRef]
- Shin, J.; Song, M.; Hafeez, H.; Jeusraj, P.J.; Kim, D.H.; Lee, J.C.; Lee, W.H.; Choi, D.K.; Kim, C.H.; Bae, T.-S.; et al. Harvesting near- and far-field plasmonic enhancements from large size gold nanoparticles for improved performance in organic bulk heterojunction solar cells. Org. Electron. 2019, 66, 94–101. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices, Materials for sustainable energy: A collection of peer-reviewed research and review articles from nature publishing group. Nat. Mater. 2011, 9, 205–213. [Google Scholar] [CrossRef]
- Xue, M.; Li, L.; de Villers, B.J.T.; Shen, H.; Zhu, J.; Yu, Z.; Stieg, A.Z.; Pei, Q.; Schwartz, B.J.; Wang, K.L. Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles. Appl. Phys. Lett. 2011, 98, 253302. [Google Scholar] [CrossRef]
- Chen, Y.; Ming, H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2012, 2, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Cho, S.H.; Zandi, O.; Ghosh, S.; Johns, R.W.; Milliron, D.J. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chem. Rev. 2018, 118, 3121–3207. [Google Scholar] [CrossRef]
- Feng, L.; Niu, M.; Wen, Z.; Hao, X. Recent Advances of Plasmonic Organic Solar Cells: Photophysical Investigations. Polymers 2018, 10, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putnin, T.; Lertvachirapaiboon, C.; Ishikawa, R.; Shinbo, K.; Kato, K.; Ekgasit, S.; Ounnunkad, K.; Baba, A. Enhanced organic solar cell performance: Multiple surface plasmon resonance and incorporation of silver nanodisks into a grating-structure electrode. Opto Electron. Adv. 2019, 2, 19001001–19001011. [Google Scholar] [CrossRef]
- Mola, G.T.; Mthethwa, M.C.; Hamed, M.S.; Adedeji, M.A.; Mbuyise, X.G.; Kumar, A.; Sharma, G.; Zang, Y. Local surface plasmon resonance assisted energy harvesting in thin film organic solar cells. J. Alloys Compd. 2021, 856, 158172. [Google Scholar] [CrossRef]
- Ho, W.-J.; Su, S.-Y.; Lee, Y.-Y.; Syu, H.-J.; Lin, C.-F. Performance-Enhanced Textured Silicon Solar Cells Based on Plasmonic Light Scattering Using Silver and Indium Nanoparticles. Matererials 2015, 8, 6668–6676. [Google Scholar] [CrossRef] [Green Version]
- Hajjiah, A.; Kandas, I.; Shehata, N. Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study. Matererials 2018, 11, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhalayfeh, M.A.; Aziz, A.A.; Pakhuruddin, M.Z.; Katubi, K.M.M. Recent Advances of Perovskite Solar Cells Embedded with Plasmonic Nanoparticles. Phys. Status Solidi A 2021, 218, 2100310. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.Y.; Park, O.O. Enhanced performance and mechanical durability of a flexible solar cell from the dry transfer of PEDOT:PSS with polymer nanoparticles. J. Mater. Chem. C 2018, 6, 4106–4113. [Google Scholar] [CrossRef]
- Kim, S.H.; Saeed, M.A.; Lee, S.Y.; Shim, J.W. Investigating the Indoor Performance of Planar Heterojunction Based Organic Photovoltaics. IEEE J. Photovolta. 2021, 11, 997–1003. [Google Scholar] [CrossRef]
- Saeed, M.A.; Kim, S.H.; Baek, K.; Hyun, J.K.; Lee, S.Y.; Shim, J.W. PEDOT: PSS: CuNW-based transparent composite electrodes for high-performance and flexible organic photovoltaics under indoor lighting. Appl. Surf. Sci. 2021, 567, 150852. [Google Scholar] [CrossRef]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Formation and electrochemical evaluation of polyaniline and polypyrrole nanocomposites based on glucose oxidase and gold nanostructures. Polymers 2020, 12, 3026. [Google Scholar] [CrossRef]
- German, N.; Ramanaviciene, A.; Ramanavicius, A. Dispersed Conducting Polymer Nanocomposites with Glucose Oxidase and Gold Nanoparticles for the Design of Enzymatic Glucose Biosensors. Polymers 2021, 13, 2173. [Google Scholar] [CrossRef]
- Lu, L.; Luo, Z.; Xu, T.; Yu, L. Cooperative Plasmonic Effect of Ag and Au Nanoparticles on Enhancing Performance of Polymer Solar Cells. Nano Lett. 2013, 13, 59–64. [Google Scholar] [CrossRef]
- Choy, W.C.H. The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells. Chem. Commun. 2014, 50, 11984–11993. [Google Scholar] [CrossRef]
- Stratakis, E.; Kymakis, E. Nanoparticle-based plasmonic organic photovoltaic devices. Mater. Today 2013, 16, 133–146. [Google Scholar] [CrossRef]
- Said, D.A.; Ali, A.M.; Khayyat, M.M.; Boustimi, M.; Loulou, M.; Seoudi, R. A study of the influence of plasmonic resonance of gold nanoparticle doped PEDOT:PSS on the performance of organic solar cells based on CuPc/C60. Heliyon 2019, 5, e02675. [Google Scholar] [CrossRef]
- Gao, X.; Yan, L.; Xu, R.; Sun, X. Plasmonic Au nanorods and irradiated PDA/Au nanorod composite used as modifier of the electron transport layer for PTB7:PC71BM polymer solar cells. J. Mater. Sci. Mater. Electron. 2018, 29, 19976–19984. [Google Scholar] [CrossRef]
- Ren, X.; Cheng, J.; Zhang, S.; Li, X.; Rao, T.; Huo, L.; Hou, J.; Choy, W.C. High efficiency organic solar cells achieved by the simultaneous plasmon-optical and plasmon-electrical effects from plasmonic asymmetric modes of gold nanostars. Small 2016, 12, 5200–5207. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Hao, Y.; Sun, Q.; Cui, Y.; Li, Z.; Ji, T.; Wang, H.; Zhu, F. Broadband EQE enhancement in organic solar cells with multiple-shaped silver nanoparticles: Optical coupling and interfacial engineering. Mater. Today Energy 2017, 3, 84–91. [Google Scholar] [CrossRef]
- Wang, D.H.; Kim, D.Y.; Choi, K.W.; Seo, J.H.; Im, S.H.; Park, J.H.; Park, O.O.; Heeger, A.J. Enhancement of Donor-Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angew. Chem. 2011, 123, 5633–5637. [Google Scholar] [CrossRef]
- Chen, C.-P.; Lee, I.-C.; Tsai, Y.-Y.; Huang, C.-L.; Chen, Y.-C.; Huang, G.-W. Efficient organic solar cells based on PTB7/PC71BM blend film with embedded different shapes silver nanoparticles into PEDOT:PSS as hole transporting layers. Org. Electron. 2018, 62, 95–101. [Google Scholar] [CrossRef]
- Gao, Y.; Jin, F.; Su, Z.; Zhao, H.; Luo, Y.; Chu, B.; Li, W. Cooperative plasmon enhanced organic solar cells with thermal coevaporated Au and Ag nanoparticles. Org. Electron. 2017, 48, 336–341. [Google Scholar] [CrossRef]
- Rezaei, B.; Afshar-Taromi, F.; Ahmadi, Z.; Rigi, S.A.; Yousefi, N. Yousefi, Enhancement of power conversion efficiency of bulk heterojunction polymer solar cells using core/shell, Au/graphene plasmonic nanostructure. Mater. Chem. Phys. 2019, 228, 325–335. [Google Scholar] [CrossRef]
- Tran, Q.N.; Lee, H.K.; Kim, J.H.; Park, S.J. Influence of Gold-Silver Rough-Surface Nanoparticles on Plasmonic Light Scattering in Organic Solar Cells. J. Nanosci. Nanotechnol. 2020, 20, 304–311. [Google Scholar] [CrossRef]
- Baek, S.-W.; Park, G.; Noh, J.; Cho, C.; Lee, C.-H.; Seo, M.-K.; Song, H.; Lee, J.-Y. Au@Ag Core–Shell Nanocubes for Efficient Plasmonic Light Scattering Effect in Low Bandgap Organic Solar Cells. ACS Nano 2014, 8, 3302–3312. [Google Scholar] [CrossRef]
- Alkhalayfeh, M.A.; Aziz, A.A.; Pakhuruddin, M.Z. Enhancing the efficiency of polymer solar cells by embedding Au@Ag NPs Durian shape in buffer layer. Sol. Energy 2021, 214, 565–574. [Google Scholar] [CrossRef]
- Huang, J.; Miller, P.F.; Wilson, J.S.; de Mello, A.J.; de Mello, J.C.; Bradley, D.D.C. Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4-ethylenedioxythiophene)/Poly(styrene sulfonate) Films. Adv. Funct. Mater. 2005, 15, 290–296. [Google Scholar] [CrossRef]
- Mohammad, T.; Bharti, V.; Kumar, V.; Mudgal, S.; Dutta, V. Spray coated europium doped PEDOT:PSS anode buffer layer for organic solar cell: The role of electric field during deposition. Org. Electron. 2019, 66, 242–248. [Google Scholar] [CrossRef]
- Ismail, Y.A.; Kishi, N.; Soga, T. Improvement of organic solar cells using aluminium microstructures prepared in PEDOT:PSS buffer layer by using ultrasonic ablation technique. Thin Solid Films 2016, 616, 73–79. [Google Scholar] [CrossRef]
- Hu, W.D.; Dall’Agnese, C.; Wang, X.F.; Chen, G.; Li, M.Z.; Song, J.X.; Wei, Y.J.; Miyasaka, T. Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. J. Photochem. Photobiol. A Chem. 2018, 357, 36–40. [Google Scholar] [CrossRef]
- Sun, K.; Qiu, J.; Liu, J.; Miao, Y. Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. J. Mater. Sci. 2009, 44, 754–758. [Google Scholar] [CrossRef]
- Annur, S.; Santosa, S.J.; Aprilita, N.H. pH Dependence of Size Control in Gold Nanoparticles Synthesized at Room Temperature. Orient. J. Chem. 2018, 34, 2305–2312. [Google Scholar] [CrossRef] [Green Version]
- Annur, S.; Santosa, S.J.; Aprilita, N.H.; Phuong, N.T.; van Phuoc, N. Rapid Synthesis of Gold Nanoparticles without Heating Process. Asian J. Chem. 2018, 30, 2399–2403. [Google Scholar] [CrossRef]
- Cheng, L.-C.; Huang, J.-H.; Chen, H.-M.; Lai, T.-C.; Yang, K.-Y.; Liu, R.-S.; Hsiao, M.; Chen, C.-H.; Her, L.-J.; Tsai, D.P. Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J. Mater. Chem. 2012, 22, 2244–2253. [Google Scholar] [CrossRef]
- Babaei, Z.; Rezaei, B.; Pisheh, M.K.; Afshar-Taromi, F. In situ synthesis of gold/silver nanoparticles and polyaniline as buffer layer in polymer solar cells. Mater. Chem. Phys. 2020, 248, 122879. [Google Scholar] [CrossRef]
- Otieno, F.; Shumbula, N.P.; Airo, M.; Mbuso, M.; Moloto, N.; Erasmus, R.M.; Quandt, A.; Wamwangi, D. Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer. AIP Adv. 2017, 7, 085302. [Google Scholar] [CrossRef]
- Ginting, R.T.; Kaur, S.; Lim, D.-K.; Kim, J.-M.; Lee, J.H.; Lee, S.H.; Kang, J.-W. Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 36111–36118. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Li, H.; Zheng, B.; Qian, K.; Lei, Q.; Han, G.; Song, Y.; Shao, P. Effect of silver nanospheres embedded in buffer layer based on organic solar cells. J. Mater. Sci. Mater. Electron. 2018, 29, 1349–1355. [Google Scholar] [CrossRef]
Samples | Jsc (mA/cm2) | Voc (mV) | Jmax (mA/cm2) | Vmax(mV) | FF (%) | PCE(%) |
---|---|---|---|---|---|---|
S1 | 11.82 | 685.8 | 6.27 | 400 | 30.9 | 2.50 |
S2 | 16.58 | 696.4 | 9.00 | 400 | 31.2 | 3.60 |
S3 | 17.07 | 697.5 | 9.32 | 400 | 31.3 | 3.73 |
S4 | 17.62 | 698.0 | 9.62 | 400 | 31.3 | 3.84 |
S5 | 18.98 | 699.1 | 10.41 | 400 | 31.4 | 4.15 |
S6 | 18.46 | 698.6 | 10.06 | 400 | 31.2 | 4.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhalayfeh, M.A.; Abdul Aziz, A.; Pakhuruddin, M.Z.; M. Katubi, K.M. Spiky Durian-Shaped Au@Ag Nanoparticles in PEDOT:PSS for Improved Efficiency of Organic Solar Cells. Materials 2021, 14, 5591. https://doi.org/10.3390/ma14195591
Alkhalayfeh MA, Abdul Aziz A, Pakhuruddin MZ, M. Katubi KM. Spiky Durian-Shaped Au@Ag Nanoparticles in PEDOT:PSS for Improved Efficiency of Organic Solar Cells. Materials. 2021; 14(19):5591. https://doi.org/10.3390/ma14195591
Chicago/Turabian StyleAlkhalayfeh, Muheeb Ahmad, Azlan Abdul Aziz, Mohd Zamir Pakhuruddin, and Khadijah Mohammedsaleh M. Katubi. 2021. "Spiky Durian-Shaped Au@Ag Nanoparticles in PEDOT:PSS for Improved Efficiency of Organic Solar Cells" Materials 14, no. 19: 5591. https://doi.org/10.3390/ma14195591
APA StyleAlkhalayfeh, M. A., Abdul Aziz, A., Pakhuruddin, M. Z., & M. Katubi, K. M. (2021). Spiky Durian-Shaped Au@Ag Nanoparticles in PEDOT:PSS for Improved Efficiency of Organic Solar Cells. Materials, 14(19), 5591. https://doi.org/10.3390/ma14195591