Electrical and Structural Properties of Li1.3Al0.3Ti1.7(PO4)3—Based Ceramics Prepared with the Addition of Li4SiO4
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-ray Diffraction
3.2. Thermal Analysis
3.3. Microstructure
3.4. MAS NMR
3.5. Impedance Spectroscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mauger, A.; Julien, C.M.; Paolella, A.; Armand, M.; Zaghib, K. Building Better Batteries in the Solid State: A Review. Materials 2019, 12, 3892. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.V.; Julien, C.M.; Mauger, A.; Zaghib, K. Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. Nanomaterials 2020, 10, 1606. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Yang, G.; Abraham, C.; Ma, Y.; Lee, M.; Helfrick, E.; Oh, D.; Lee, D. Advances in Materials Design for All-Solid-State Batteries: From Bulk to Thin Films. Appl. Sci. 2020, 10, 4727. [Google Scholar] [CrossRef]
- Arbi, K.; Mandal, S.; Rojo, J.M.; Sanz, J. Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. A Parallel NMR and Electric Impedance Study. Chem. Mater. 2002, 14, 1091–1097. [Google Scholar] [CrossRef]
- Arbi, K.; Rojo, J.M.; Sanz, J. Lithium Mobility in Titanium Based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 Materials Followed by NMR and Impedance Spectroscopy. J. Eur. Ceram. Soc. 2007, 27, 4215–4218. [Google Scholar] [CrossRef]
- Kothari, D.H.; Kanchan, D.K. Study of Li+ Conduction in Li1.3Al0.3-xScxTi1.7(PO4)3 (x = 0.01, 0.03, 0.05 and 0.07) NASICON Ceramic Compound. Phys. B Condens. Matter 2016, 494, 20–25. [Google Scholar] [CrossRef]
- DeWees, R.; Wang, H. Synthesis and Properties of NaSICON-Type LATP and LAGP Solid Electrolytes. ChemSusChem 2019, 12, 3713–3725. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Dalvi, A. Insertion of Binary LiCl-P2O5 Glass between Li+ NASICON Crystallites and Its Effect on Controlling Inter-Grain Transport. Solid State Ion. 2019, 342, 115082. [Google Scholar] [CrossRef]
- Waetzig, K.; Rost, A.; Heubner, C.; Coeler, M.; Nikolowski, K.; Wolter, M.; Schilm, J. Synthesis and Sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) Electrolyte for Ceramics with Improved Li+ Conductivity. J. Alloy. Compd. 2020, 818, 153237. [Google Scholar] [CrossRef]
- Waetzig, K.; Rost, A.; Langklotz, U.; Matthey, B.; Schilm, J. An Explanation of the Microcrack Formation in Li1.3Al0.3Ti1.7(PO4)3 Ceramics. J. Eur. Ceram. Soc. 2016, 36, 1995–2001. [Google Scholar] [CrossRef]
- Ślubowska, W.; Kwatek, K.; Jastrzębski, C.; Nowiński, J.L. Thermal, Structural and Electrical Study of Boron-Incorporated LATP Glasses and Glass-Ceramics. Solid State Ion. 2019, 335, 129–134. [Google Scholar] [CrossRef]
- Sharma, N.; Dalvi, A. Dispersion of Li2SO4-LiPO3 Glass in LiTi2(PO4)3 Matrix: Assessment of Enhanced Electrical Transport. J. Alloy. Compd. 2019, 782, 288–298. [Google Scholar] [CrossRef]
- Kwatek, K.; Nowiński, J.L. The Lithium-Ion-Conducting Ceramic Composite Based on LiTi2(PO4)3 with Addition of LiF. Ionics 2019, 25, 41–50. [Google Scholar] [CrossRef]
- Waetzig, K.; Heubner, C.; Kusnezoff, M. Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7(PO4)3 Ceramics. Crystals 2020, 10, 408. [Google Scholar] [CrossRef]
- Zhao, E.; Guo, Y.; Xu, G.; Yuan, L.; Liu, J.; Li, X.; Yang, L.; Ma, J.; Li, Y.; Fan, S. High Ionic Conductivity Y Doped Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte. J. Alloys Compd. 2019, 782, 384–391. [Google Scholar] [CrossRef]
- Pershina, S.V.; Antonov, B.D.; Farlenkov, A.S.; Vovkotrub, E.G. Glass-Ceramics in Li1+xAlxGe2-x(PO4)3 System: The Effect of Al2O3 Addition on Microstructure, Structure and Electrical Properties. J. Alloys Compd. 2020, 835, 155281. [Google Scholar] [CrossRef]
- Pershina, S.V.; Pankratov, A.A.; Vovkotrub, E.G.; Antonov, B.D. Promising High-Conductivity Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolytes: The Effect of Crystallization Temperature on the Microstructure and Transport Properties. Ionics 2019, 25, 4713–4725. [Google Scholar] [CrossRef]
- Tolganbek, N.; Yerkinbekova, Y.; Khairullin, A.; Bakenov, Z.; Kanamura, K.; Mentbayeva, A. Enhancing Purity and Ionic Conductivity of NASICON-Typed Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte. Ceram. Int. 2021, 47, 18188–18195. [Google Scholar] [CrossRef]
- Kotobuki, M.; Koishi, M. Effect of Li Salts on the Properties of Li1.5Al0.5Ti1.5(PO4)3 Solid Electrolytes Prepared by the Co-Precipitation Method. J. Asian Ceram. Soc. 2019, 7, 426–433. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X. Influence of Excess Lithium and Sintering on the Conductivity of Li1.3Al0.3Ti1.7(PO4)3. Funct. Mater. Lett. 2019, 12, 5–9. [Google Scholar] [CrossRef]
- Lu, X.; Wang, R.; Zhang, F.; Li, J. The Influence of Phosphorous Source on the Properties of NASICON Lithium-Ion Conductor Li1.3Al0.3Ti1.7(PO4)3. Solid State Ion. 2020, 354, 115417. [Google Scholar] [CrossRef]
- Kwatek, K.; Ślubowska, W.; Trébosc, J.; Lafon, O.; Nowiński, J.L. Impact of Li2.9B0.9S0.1O3.1 Glass Additive on the Structure and Electrical Properties of the LATP-Based Ceramics. J. Alloys Compd. 2020, 820, 153072. [Google Scholar] [CrossRef]
- Kwatek, K.; Ślubowska, W.; Ruiz, C.; Sobrados, I.; Sanz, J.; Garbarczyk, J.E.; Nowiński, J.L. The Mechanism of Enhanced Ionic Conductivity in Li1.3Al0.3Ti1.7(PO4)3–(0.75Li2O·0.25B2O3) Composites. J. Alloys Compd. 2020, 838, 155623. [Google Scholar] [CrossRef]
- Gunduz, D.C.; Schierholz, R.; Yu, S.; Tempel, H.; Kungl, H.; Eichel, R.A. Combined Quantitative Microscopy on the Microstructure and Phase Evolution in Li1.3Al0.3Ti1.7(PO4)3 Ceramics. J. Adv. Ceram. 2020, 9, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Mertens, A.; Gao, X.; Gunduz, D.C.; Schierholz, R.; Benning, S.; Hausen, F.; Mertens, J.; Kungl, H.; Tempel, H.; et al. Influence of Microstructure and AlPO4 Secondary-Phase on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3 Solid-State Electrolyte. Funct. Mater. Lett. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Lv, J.; Zheng, R.; Lv, P.; Wei, W. Effects of Heat Treatment and Additive LiF on the Properties of Solid-State Electrolyte of Li1.5Al0.5Ge1.5(PO4)3. Energy Environ. Mater. 2021, 4, 208–212. [Google Scholar] [CrossRef]
- Xiong, L.; Ren, Z.; Xu, Y.; Mao, S.; Lei, P.; Sun, M. LiF Assisted Synthesis of LiTi2(PO4)3 Solid Electrolyte with Enhanced Ionic Conductivity. Solid State Ion. 2017, 309, 22–26. [Google Scholar] [CrossRef]
- Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Electrical Property and Sinterability of LiTi2(PO4)3 Mixed with Lithium Salt (Li3PO4 or Li3BO3). Solid State Ion. 1991, 47, 257–264. [Google Scholar] [CrossRef]
- Bai, H.; Hu, J.; Li, X.; Duan, Y.; Shao, F.; Kozawa, T.; Naito, M.; Zhang, J. Influence of LiBO2 Addition on the Microstructure and Lithium-Ion Conductivity of Li1+xAlxTi2−x(PO4)3 (x = 0.3) Ceramic Electrolyte. Ceram. Int. 2018, 44, 6558–6563. [Google Scholar] [CrossRef]
- Dai, L.; Wang, J.; Shi, Z.; Yu, L.; Shi, J. Influence of LiBF4 Sintering Aid on the Microstructure and Conductivity of LATP Solid Electrolyte. Ceram. Int. 2021, 47, 11662–11667. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Tabuchi, M.; Nakamura, O. Ionic Conductivity Enhancement in LiTi2(PO4)3-Based Composite Electrolyte by the Addition of Lithium Nitrate. J. Power Sources 1997, 68, 407–411. [Google Scholar] [CrossRef]
- Kothari, D.H.; Kanchan, D.K. Effect of Adding Li2O and MgO on Li-Conductivity in NASICON Material. Phys. B Condens. Matter 2021, 600, 412489. [Google Scholar] [CrossRef]
- Hupfer, T.; Bucharsky, E.C.; Schell, K.G.; Senyshyn, A.; Monchak, M.; Hoffmann, M.J.; Ehrenberg, H. Evolution of Microstructure and Its Relation to Ionic Conductivity in Li1+xAlxTi2-x(PO4)3. Solid State Ion. 2016, 288, 235–239. [Google Scholar] [CrossRef]
- Schell, K.G.; Bucharsky, E.C.; Lemke, F.; Hoffmann, M.J. Effect of Calcination Conditions on Lithium Conductivity in Li1.3Ti1.7Al0.3(PO4)3 Prepared by Sol-Gel Route. Ionics 2017, 23, 821–827. [Google Scholar] [CrossRef]
- Pietrzak, T.K. Multi-Device Software for Impedance Spectroscopy Measurements with Stabilization in Low and High Temperature Ranges Working under Linux Environment. Ionics 2019, 25, 2445–2452. [Google Scholar] [CrossRef] [Green Version]
- Lippmaa, E.; Samoson, A.; Magi, M. High-Resolution of 27Al NMR of Aluminosilicates. J. Am. Chem. Soc. 1986, 108, 1730–1735. [Google Scholar] [CrossRef]
- Massiot, D.; Bessada, C.; Coutures, J.P.; Taulelle, F. A Quantitative Study of 27Al MAS NMR in Crystalline YAG. J. Magn. Reson. 1990, 90, 231–242. [Google Scholar] [CrossRef]
- Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calve, S.; Alonso, B.; Durand, J.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling One- and Two-Dimensional Solid-State NMR. Magn. Reson. Chem. 2002, 40, 70–76. [Google Scholar] [CrossRef]
- Kyono, N.; Bai, F.; Nemori, H.; Minami, H.; Mori, D.; Takeda, Y. Lithium-Ion Conducting Solid Electrolytes of Li1.4Al0.4Ge0.2Ti1.4(PO4)3 and MOx (M = Al, Ti, and Zr) Composites. Solid State Ion. 2018, 324, 114–127. [Google Scholar] [CrossRef]
- Jimenez, R.; Sobrados, I.; Martinez, S.; Criado, M.; Perea, B.; Sanz, J. Li Conductivity in Li1+xTi2-xAlx(PO4)3 (0.3 ≤ x ≤ 0.7) Ceramics Prepared from Sol-Gel Precursors. J. Alloy. Compd. 2020, 844, 156051. [Google Scholar] [CrossRef]
- Ślubowska, W.; Montagne, L.; Lafon, O.; Méar, F.; Kwatek, K. B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectroscopy Methods. Nanomaterials 2021, 11, 390. [Google Scholar] [CrossRef]
- Jimenez, R.; Sobrados, I.; Martinez-Chaparro, S.; Adolfo del Campo, A.; Calzada, M.L.; Sanz, J.; Tsai, S.Y.; Lin, M.R.; Fung, K.Z.; Kazakevičius, E.; et al. Preparation and Characterization of Large Area Li-NASICON Electrolyte Thick Films. Inorganics 2019, 7, 107. [Google Scholar] [CrossRef] [Green Version]
- Arbi, K.; Bucheli, W.; Jiménez, R.; Sanz, J. High Lithium Ion Conducting Solid Electrolytes Based on NASICON Li1+xAlxM2-x(PO4)3 Materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 2015, 35, 1477–1484. [Google Scholar] [CrossRef]
- Soman, S.; Iwai, Y.; Kawamura, J.; Kulkarni, A. Crystalline Phase Content and Ionic Conductivity Correlation in LATP Glass-Ceramic. J. Solid State Electrochem. 2012, 16, 1761–1766. [Google Scholar] [CrossRef]
- Best, A.S.; Forsyth, M.; MacFarlane, D.R. Stoichiometric Changes in Lithium Conducting Materials Based on Li1+xAlxTi2-x(PO4)3: Impedance, X-Ray and NMR Studies. Solid State Ion. 2000, 136–137, 339–344. [Google Scholar] [CrossRef]
- Vinod Chandran, C.; Pristat, S.; Witt, E.; Tietz, F.; Heitjans, P. Solid-State NMR Investigations on the Structure and Dynamics of the Ionic Conductor Li1+xAlxTi2-x(PO4)3 (0.0 ≤ x ≤ 1.0). J. Phys. Chem. C 2016, 120, 8436–8442. [Google Scholar] [CrossRef]
- d’Anciães Almeida Silva, I.; Nieto-Muñoz, A.M.; Rodrigues, A.C.M.; Eckert, H. Structure and Lithium-Ion Mobility in Li1.5M0.5Ge1.5(PO4)3 (M = Ga, Sc, Y) NASICON Glass-Ceramics. J. Am. Ceram. Soc. 2020, 103, 4002–4012. [Google Scholar] [CrossRef] [Green Version]
- Raguž, B.; Wittich, K.; Glaum, R. Two New, Metastable Polymorphs of Lithium Pyrophosphate Li4P2O7. Eur. J. Inorg. Chem. 2019, 2019, 1688–1696. [Google Scholar] [CrossRef]
- Kim, T.; Park, S.; Oh, S.M. Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode. J. Electrochem. Soc. 2007, 154, A1112. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwatek, K.; Ślubowska, W.; Nowiński, J.L.; Krawczyńska, A.T.; Sobrados, I.; Sanz, J. Electrical and Structural Properties of Li1.3Al0.3Ti1.7(PO4)3—Based Ceramics Prepared with the Addition of Li4SiO4. Materials 2021, 14, 5729. https://doi.org/10.3390/ma14195729
Kwatek K, Ślubowska W, Nowiński JL, Krawczyńska AT, Sobrados I, Sanz J. Electrical and Structural Properties of Li1.3Al0.3Ti1.7(PO4)3—Based Ceramics Prepared with the Addition of Li4SiO4. Materials. 2021; 14(19):5729. https://doi.org/10.3390/ma14195729
Chicago/Turabian StyleKwatek, Konrad, Wioleta Ślubowska, Jan Leszek Nowiński, Agnieszka Teresa Krawczyńska, Isabel Sobrados, and Jesús Sanz. 2021. "Electrical and Structural Properties of Li1.3Al0.3Ti1.7(PO4)3—Based Ceramics Prepared with the Addition of Li4SiO4" Materials 14, no. 19: 5729. https://doi.org/10.3390/ma14195729
APA StyleKwatek, K., Ślubowska, W., Nowiński, J. L., Krawczyńska, A. T., Sobrados, I., & Sanz, J. (2021). Electrical and Structural Properties of Li1.3Al0.3Ti1.7(PO4)3—Based Ceramics Prepared with the Addition of Li4SiO4. Materials, 14(19), 5729. https://doi.org/10.3390/ma14195729