Effect of Core Mass and Alloy on Cyclic Fatigue Resistance of Different Nickel-Titanium Endodontic Instruments in Matching Artificial Canals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Artificial Canals
2.3. Cyclic Fatigue Testing
2.4. Analysis of the Fractured Instruments
2.5. Statistical Analysis
3. Results
3.1. Time and Cycles to Fracture—Taper 0.04
3.2. Time and Cycles to Fracture—Taper ≥ 0.06
3.3. Fracture Lengths—Taper 0.04
3.4. Fracture Lengths—Taper > 0.06
3.5. Cross-Sectional Parameters of the Instruments
3.6. Analysis of the Fractured Instruments
4. Discussion
4.1. Core Mass and Cross-Sectional Design
4.2. Alloy
4.3. Rotational Speed
4.4. Experimental Setup
4.5. Weaknesses
- (i)
- No setup currently used for cyclic fatigue testing can simulate the exact clinical conditions of endodontic treatment procedures with additional axial loading and active dentin removal in a standardized manner.
- (ii)
- Different instruments made of different alloys with different cross-sectional shapes, designs and core masses, as well as rotational speeds are difficult to compare in terms of cyclic fatigue.
- (iii)
- Superiority or inferiority in a laboratory study is not necessarily associated with better or worse performance in the patient. Therefore, the finding of a relationship between individual study parameters and increased fracture resistance of an endodontic instrument does not necessarily indicate causality.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Inan, U.; Gonulol, N. Deformation and Fracture of Mtwo Rotary Nickel-Titanium Instruments After Clinical Use. J. Endod. 2009, 35, 1396–1399. [Google Scholar] [CrossRef]
- Alfouzan, K.; Jamleh, A. Fracture of nickel titanium rotary instrument during root canal treatment and re-treatment: A 5-year retrospective study. Int. Endod. J. 2017, 51, 157–163. [Google Scholar] [CrossRef]
- Wang, N.-N.; Ge, J.-Y.; Xie, S.; Chen, G.; Zhu, M. Analysis of Mtwo Rotary Instrument Separation During Endodontic Therapy: A Retrospective Clinical Study. Cell Biophys. 2014, 70, 1091–1095. [Google Scholar] [CrossRef]
- Ungerechts, C.; Bårdsen, A.; Fristad, I. Instrument fracture in root canals—Where, why, when and what? A study from a student clinic. Int. Endod. J. 2013, 47, 183–190. [Google Scholar] [CrossRef]
- Tzanetakis, G.N.; Kontakiotis, E.G.; Maurikou, D.V.; Marzelou, M.P. Prevalence and Management of Instrument Fracture in the Postgraduate Endodontic Program at the Dental School of Athens: A Five-year Retrospective Clinical Study. J. Endod. 2008, 34, 675–678. [Google Scholar] [CrossRef]
- Shen, Y.; Coil, J.M.; Haapasalo, M. Defects in Nickel-Titanium Instruments after Clinical Use. Part 3: A 4-Year Retrospective Study from an Undergraduate Clinic. J. Endod. 2009, 35, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, G.; Galli, M.; DI Nardo, D.; Seracchiani, M.; Donfrancesco, O.; Testarelli, L. Differences in cyclic fatigue lifespan between two different heat treated NiTi endodontic rotary instruments: WaveOne Gold vs EdgeOne Fire. J. Clin. Exp. Dent. 2019, 11, e609–e613. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.; Adeodato, C.; Barbosa, I.; Aboud, L.; Scelza, P.; Scelza, M.Z. Movement kinematics and cyclic fatigue of NiTi rotary instruments: A systematic review. Int. Endod. J. 2017, 50, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Hilfer, P.B.; Bergeron, B.E.; Mayerchak, M.J.; Roberts, H.W.; Jeansonne, B.G. Multiple Autoclave Cycle Effects on Cyclic Fatigue of Nickel-Titanium Rotary Files Produced by New Manufacturing Methods. J. Endod. 2011, 37, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Alfawaz, H.; Alqedairi, A.; Alsharekh, H.; Almuzaini, E.; Alzahrani, S.; Jamleh, A. Effects of Sodium Hypochlorite Concentration and Temperature on the Cyclic Fatigue Resistance of Heat-treated Nickel-titanium Rotary Instruments. J. Endod. 2018, 44, 1563–1566. [Google Scholar] [CrossRef]
- Yared, G.M.; Dagher, F.E.B.; Machtou, P.; Kulkarni, G.K. Influence of rotational speed, torque and operator proficiency on failure of Greater Taper files. Int. Endod. J. 2002, 35, 7–12. [Google Scholar] [CrossRef]
- Zelada, G.; Varela, P.; Martín, B.; Bahíllo, J.G.; Magán, F.; Ahn, S. The Effect of Rotational Speed and the Curvature of Root Canals on the Breakage of Rotary Endodontic Instruments. J. Endod. 2002, 28, 540–542. [Google Scholar] [CrossRef]
- Sattapan, B.; Nervo, G.J.; Palamara, J.E.; Messer, H.H. Defects in Rotary Nickel-Titanium Files After Clinical Use. J. Endod. 2000, 26, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Setzer, F.C.; Böhme, C.P. Influence of Combined Cyclic Fatigue and Torsional Stress on the Fracture Point of Nickel-Titanium Rotary Instruments. J. Endod. 2013, 39, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cheung, G.S.-P.; Peng, B.; Haapasalo, M. Defects in Nickel-Titanium Instruments after Clinical Use. Part 2: Fractographic Analysis of Fractured Surface in a Cohort Study. J. Endod. 2009, 35, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.S.P.; Peng, B.; Bian, Z.; Shen, Y.; Darvell, B.W. Defects in ProTaper S1 instruments after clinical use: Fractographic examination. Int. Endod. J. 2005, 38, 802–809. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.B.; Louca, C.; Duncan, H. The impact of fractured endodontic instruments on treatment outcome. Br. Dent. J. 2013, 214, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spili, P.; Parashos, P.; Messer, H.H. The Impact of Instrument Fracture on Outcome of Endodontic Treatment. J. Endod. 2005, 31, 845–850. [Google Scholar] [CrossRef]
- McGuigan, M.B.; Louca, C.; Duncan, H.F. Clinical decision-making after endodontic instrument fracture. Br. Dent. J. 2013, 214, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Madarati, A.A.; Hunter, M.J.; Dummer, P. Management of Intracanal Separated Instruments. J. Endod. 2013, 39, 569–581. [Google Scholar] [CrossRef]
- International Organization for Standardization. International Standard ISO 3630-1:2019(E): Dentistry—Endodontic Instruments—Part 1: General Requirements, 3rd ed.; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Hülsmann, M.; Donnermeyer, D.; Schäfer, E. A critical appraisal of studies on cyclic fatigue resistance of engine-driven endodontic instruments. Int. Endod. J. 2019, 52, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. Influence of the shape of artificial canals on the fatigue resistance of NiTi rotary instruments. Int. Endod. J. 2010, 43, 69–75. [Google Scholar] [CrossRef]
- Bürklein, S.; Maßmann, P.; Donnermeyer, D.; Tegtmeyer, K.; Schäfer, E. Need for Standardization: Influence of Artificial Canal Size on Cyclic Fatigue Tests of Endodontic Instruments. Appl. Sci. 2021, 11, 4950. [Google Scholar] [CrossRef]
- Grande, N.M.; Plotino, G.; Pecci, R.; Bedini, R.; Malagnino, V.A.; Somma, F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel?titanium rotary systems. Int. Endod. J. 2006, 39, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Pedullà, E.; Plotino, G.; Scibilia, M.; Grande, N.M.; De Santis, D.; Pardo, A.; Testarelli, L.; Gambarini, G. Cyclic fatigue comparison among endodontic instruments with similar cross section and different surface coating. Minerva Stomatol. 2019, 68, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, D.; Gambarini, G.; Seracchiani, M.; Mazzoni, A.; Zanza, A.; Giudice, A.D.; D’Angelo, M.; Testarelli, L. Influence of different cross-section on cyclic fatigue resistance of two nickel–titanium rotary instruments with same heat treatment: An in vitro study. Saudi Endod. J. 2020, 10, 221–225. [Google Scholar] [CrossRef]
- Galal, M.; Hamdy, T.M. Evaluation of stress distribution in nickel-titanium rotary instruments with different geometrical designs subjected to bending and torsional load: A finite element study. Bull. Natl. Res. Cent. 2020, 44, 1–11. [Google Scholar] [CrossRef]
- Zhang, E.-W.; Cheung, G.S.; Zheng, Y.-F. Influence of Cross-sectional Design and Dimension on Mechanical Behavior of Nickel-Titanium Instruments under Torsion and Bending: A Numerical Analysis. J. Endod. 2010, 36, 1394–1398. [Google Scholar] [CrossRef]
- Gambarini, G.; Miccoli, G.; Seracchiani, M.; Khrenova, T.; Donfrancesco, O.; D’Angelo, M.; Galli, M.; Di Nardo, D.; Testarelli, L. Role of the Flat-Designed Surface in Improving the Cyclic Fatigue Resistance of Endodontic NiTi Rotary Instruments. Materials 2019, 12, 2523. [Google Scholar] [CrossRef] [Green Version]
- Kwak, S.W.; Lee, C.-J.; Kim, S.K.; Kim, H.-C.; Ha, J.-H. Comparison of Screw-In Forces during Movement of Endodontic Files with Different Geometries, Alloys, and Kinetics. Materials 2019, 12, 1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, J.-H.; Cheung, G.S.P.; Versluis, A.; Lee, C.J.; Kwak, S.W.; Kim, H.C. ‘Screw-in’ tendency of rotary nickel-titanium files due to design geometry. Int. Endod. J. 2014, 48, 666–672. [Google Scholar] [CrossRef]
- Ha, J.-H.; Kwak, S.W.; Kim, S.-K.; Kim, H.-C. Screw-in forces during instrumentation by various file systems. Restor. Dent. Endod. 2016, 41, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, G.; Jordan, L. Fatigue and Mechanical Properties of Nickel-Titanium Endodontic Instruments. J. Endod. 2002, 28, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Keskin, C.; Yilmaz, Ö.S.; Keleş, A.; Inan, U. Comparison of cyclic fatigue resistance of Rotate instrument with reciprocating and continuous rotary nickel–titanium instruments at body temperature in relation to their transformation temperatures. Clin. Oral Investig. 2021, 25, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Kaval, M.E.; Çapar, I.D.; Ertas, H. Evaluation of the Cyclic Fatigue and Torsional Resistance of Novel Nickel-Titanium Rotary Files with Various Alloy Properties. J. Endod. 2016, 42, 1840–1843. [Google Scholar] [CrossRef]
- Adigüzel, M.; Turgay, B. Comparison of the Cyclic Fatigue Resistance of Reciproc and Reciproc Blue Nickel-Titanium Instruments in Artificial Canals with Single and Double (S-shaped) Curvatures. Eur. Endod. J. 2017, 2, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-C.; Yum, J.; Hur, B.; Cheung, G.S.-P. Cyclic Fatigue and Fracture Characteristics of Ground and Twisted Nickel-Titanium Rotary Files. J. Endod. 2010, 36, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Higueras, J.J.; Arias, A.; de la Macorra, J.C. Cyclic Fatigue Resistance of K3, K3XF, and Twisted File Nickel-Titanium Files under Continuous Rotation or Reciprocating Motion. J. Endod. 2013, 39, 1585–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, B.; Zelada, G.; Varela, P.; Bahillo, J.G.; Magán, F.; Ahn, S.; Rodríguez, C. Factors influencing the fracture of nickel-titanium rotary instruments. Int. Endod. J. 2003, 36, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Lopes, H.P.; Ferreira, A.A.; Elias, C.N.; Moreira, E.J.; de Oliveira, J.C.M.; Siqueira, J.F. Influence of Rotational Speed on the Cyclic Fatigue of Rotary Nickel-Titanium Endodontic Instruments. J. Endod. 2009, 35, 1013–1016. [Google Scholar] [CrossRef]
- Gao, Y.; Shotton, V.; Wilkinson, K.; Phillips, G.; Johnson, W. Effects of Raw Material and Rotational Speed on the Cyclic Fatigue of ProFile Vortex Rotary Instruments. J. Endod. 2010, 36, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Grande, N.M.; Cordaro, M.; Testarelli, L.; Gambarini, G. Measurement of the trajectory of different NiTi rotary instruments in an artificial canal specifically designed for cyclic fatigue tests. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 108, e152–e156. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Mazza, C.; Petrovic, R.; Testarelli, L.; Gambarini, G. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 109, e60–e66. [Google Scholar] [CrossRef] [PubMed]
- de Hemptinne, F.; Slaus, G.; Vandendael, M.; Jacquet, W.; De Moor, R.J.; Bottenberg, P. In Vivo Intracanal Temperature Evolution during Endodontic Treatment after the Injection of Room Temperature or Preheated Sodium Hypochlorite. J. Endod. 2015, 41, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Jamleh, A.; Yahata, Y.; Ebihara, A.; Atmeh, A.R.; Bakhsh, T.; Suda, H. Performance of NiTi endodontic instrument under different temperatures. Odontology 2016, 104, 324–328. [Google Scholar] [CrossRef]
- Dosanjh, A.; Paurazas, S.; Askar, M. The Effect of Temperature on Cyclic Fatigue of Nickel-titanium Rotary Endodontic Instruments. J. Endod. 2017, 43, 823–826. [Google Scholar] [CrossRef] [PubMed]
- de Vasconcelos, R.A.; Murphy, S.; Carvalho, C.T.; Govindjee, R.G.; Govindjee, S.; Peters, O.A. Evidence for Reduced Fatigue Resistance of Contemporary Rotary Instruments Exposed to Body Temperature. J. Endod. 2016, 42, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Klymus, M.E.; Alcalde, M.P.; Vivan, R.R.; Só, M.V.R.; De Vasconselos, B.C.; Duarte, M.A.H. Effect of temperature on the cyclic fatigue resistance of thermally treated reciprocating instruments. Clin. Oral Investig. 2018, 23, 3047–3052. [Google Scholar] [CrossRef]
- Arias, A.; Hejlawy, S.; Murphy, S.; De La Macorra, J.C.; Govindjee, S.; Peters, O. Variable impact by ambient temperature on fatigue resistance of heat-treated nickel titanium instruments. Clin. Oral Investig. 2018, 23, 1101–1108. [Google Scholar] [CrossRef]
Instrument Taper 0.04 | Instruments Fractured | rpm | Time to Fracture (sec) * | Cycles to Fracture | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Sd | Min | Max | Mean | Sd | Min | Max | |||
F360 | 20/20 b | 300 | 211.2 c | 60.44 | 123 | 304 | 1055.75 a | 302.2 | 615 | 1520 |
TN | 20/20 b | 500 | 150.2 a | 27.02 | 114 | 198 | 1251.7 b | 225.2 | 950 | 1650 |
TF | 20/20 b | 500 | 178.7 b | 48.11 | 112 | 267 | 1489.2 c | 400.9 | 933 | 2225 |
JIZAI_04 | 1/20 a | 500 | >600 d | - | 559 | n/a | >5000 d | - | 4658 | n/a |
Instrument Taper 0.06 | Instruments Fractured | rpm | Time to Fracture (sec) * | Cycles to Fracture | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Sd | Min | Max | Mean | Sd | Min | Max | |||
Mtwo | 20/20 b | 280 | 255 a | 35.95 | 198 | 335 | 1191 a | 154.0 | 924 | 1563 |
Hyflex | 4/20 a | 400 | >600 b | - | 353 | >600 | >4000 b | - | 2353 | >4000 |
JIZAI_06 | 4/20 a | 500 | >600 b | - | 482 | >600 | >5000 c | - | 4017 | >5000 |
Instrument Taper 0.04 | Instruments Fractured | Lengths of Fractured Instruments (mm) | |||
---|---|---|---|---|---|
Mean | Sd | Min | Max | ||
F360 | 20/20 b | 2.95 b | 0.35 | 2.33 | 3.76 |
TN | 20/20 b | 2.29 a | 0.23 | 1.76 | 2.65 |
TF | 20/20 b | 3.04 b | 0.56 | 1.73 | 4.33 |
JIZAI | 1/20 a | 2.70 a,b | - | - | - |
Instrument Taper ≥ 0.06 | Instruments Fractured | lengths of fractured instruments (mm) | |||
---|---|---|---|---|---|
Mean | Sd | Min | Max | ||
Mtwo | 20/20 b | 2.87 a | 0.51 | 2.12 | 4.03 |
Hyflex | 4/20 a | 5.02 b | 0.93 | 3.95 | 5.62 |
JIZAI | 4/20 a | 2.29 a | 0.39 | 1.84 | 2.63 |
Instrument Cross-Section Parameters | |||||||
---|---|---|---|---|---|---|---|
Instrument | Size/ Taper | Cross Sectional Design | Centered or Off-Centered | Outer Diameter at 6 mm [mm] | Core Diameter [mm] | Cross Sectional Height [mm] | Approx. Width-Height Ratio |
F360 | 25/0.04 | S-shape | centered | 0.45 | 0.23 | 0.37 | 1:1.6 |
TruNatomy | 26/0.04 v | Rectangular | off-centered | 0.45 | 0.29 | 0.30 | 1:1 |
Twisted file | 25/0.04 | Triangular | centered | 0.45 | 0.23 | 0.34 | 1:1.5 |
JIZAI_04 | 25/0.04 | (slender) rectangular | off-centered | 0.45 | 0.27 | 0.37 | 1: 1.4 |
Mtwo | 25/0.06 | S-shape | centered | 0.55 | 0.26 | 0.48 | 1:1.8 |
Hyflex Onefile | 25/~ | Trapezoidal | centered | 0.62 | 0.33 | 0.55 | 1:1.7 |
JIZAI_06 | 25/0.06 | (slender) rectangular | off-centered | 0.55 | 0.30 | 0.45 | 1:1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bürklein, S.; Zupanc, L.; Donnermeyer, D.; Tegtmeyer, K.; Schäfer, E. Effect of Core Mass and Alloy on Cyclic Fatigue Resistance of Different Nickel-Titanium Endodontic Instruments in Matching Artificial Canals. Materials 2021, 14, 5734. https://doi.org/10.3390/ma14195734
Bürklein S, Zupanc L, Donnermeyer D, Tegtmeyer K, Schäfer E. Effect of Core Mass and Alloy on Cyclic Fatigue Resistance of Different Nickel-Titanium Endodontic Instruments in Matching Artificial Canals. Materials. 2021; 14(19):5734. https://doi.org/10.3390/ma14195734
Chicago/Turabian StyleBürklein, Sebastian, Lennart Zupanc, David Donnermeyer, Karsten Tegtmeyer, and Edgar Schäfer. 2021. "Effect of Core Mass and Alloy on Cyclic Fatigue Resistance of Different Nickel-Titanium Endodontic Instruments in Matching Artificial Canals" Materials 14, no. 19: 5734. https://doi.org/10.3390/ma14195734
APA StyleBürklein, S., Zupanc, L., Donnermeyer, D., Tegtmeyer, K., & Schäfer, E. (2021). Effect of Core Mass and Alloy on Cyclic Fatigue Resistance of Different Nickel-Titanium Endodontic Instruments in Matching Artificial Canals. Materials, 14(19), 5734. https://doi.org/10.3390/ma14195734