Debris Removal Using a Hydroxyapatite Nanoparticle-Containing Solution (Vector Polish) with Sonic or Ultrasonic Agitation
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- (b)
- (c)
- (d)
3. Statistical Evaluation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zehnder, M. Root canal irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, W.T.; Martin, H. A scanning electron microscope evaluation of root canal débridement with the endosonic ultrasonic synergistic system. Oral Surg. Oral Med. Oral Pathol. 1982, 53, 527–531. [Google Scholar] [CrossRef]
- Weber, C.D.; McClanahan, S.B.; Miller, G.A.; Diener-West, M.; Johnson, J.D. The effect of passive ultrasonic activation of 2% chlorhexidine or 5.25% sodium hypochlorite irrigant on residual antimicrobial activity in root canals. J. Endod. 2003, 29, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, L.W.M.; Versluis, M.; Wu, M.K.; Wesselink, P.R. Passive ultrasonic irrigation of the root canal: A review of the literature. Int. Endod. J. 2007, 40, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Mortman, R.E. Technologic advances in endodontics. Dent. Clin. N. Am. 2011, 55, 461–480. [Google Scholar] [CrossRef]
- Kishen, A.; Shi, Z.; Shrestha, A.; Neoh, K.G. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J. Endod. 2008, 34, 1515–1520. [Google Scholar] [CrossRef]
- Samiei, M.; Farjami, A.; Dizaj, S.M.; Lotfipour, F. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 1269–1278. [Google Scholar] [CrossRef]
- Shrestha, A.; Fong, S.W.; Khoo, B.C.; Kishen, A. Delivery of antibacterial nanoparticles into dentinal tubules using high-intensity focused ultrasound. J. Endod. 2009, 35, 1028–1033. [Google Scholar] [CrossRef]
- Rodrigues, C.T.; de Andrade, F.B.; de Vasconcelos, L.R.; Midena, R.Z.; Pereira, T.C.; Kuga, M.C.; Duarte, M.A.H.; Bernardineli, N. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int. Endod. J. 2018, 51, 901–911. [Google Scholar] [CrossRef]
- Raura, N.; Garg, A.; Arora, A.; Roma, M. Nanoparticle technology and its implications in endoodntics: A review. Biomater Res. 2020, 24, 21. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Nei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Ge, S. Application of antimicrobial nanoparticles in dentistry. Molecules. 2019, 24, 1033. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Kishen, A. Antibacterial Nanoparticles in Endodontics: A Review. J. Endod. 2016, 42, 1417–1426. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Jafarzadeh, H.; Shalavi, S.; Palazzi, F. Recent Advances in Root Canal Disinfection: A Review. Iran. Endod. J. 2017, 12, 402–406. [Google Scholar]
- Kahl, M.; Haase, E.; Kocher, T.; Rühling, A. Clinical effects after subgingival polishing with a non-aggressive ultrasonic device in initial therapy. J. Clin. Periodontol. 2007, 34, 318–324. [Google Scholar] [CrossRef]
- De Almeida, J.; Cechella, B.C.; Bernardi, A.V.; de Lima Pimenta, A.; Felippe, W.T. Effectiveness of nanoparticles solutions and conventional endodontic irrigants against Enterococcus faecalis biofilm. Indian J. Dent. Res. 2018, 29, 347–351. [Google Scholar] [CrossRef]
- Ionescu, A.; Harris, D.; Selvaganapathy, P.R.; Kishen, A. Electrokinetic transport and distribution of antibacterial nanoparticles for endodontic disinfection. Int. Endod. J. 2020, 53, 1120–1130. [Google Scholar] [CrossRef]
- Braun, A.; Krause, F.; Frentzen, M.; Jepsen, S. Efficiency of subgingival calculus removal with the Vector-system compared to ultrasonic scaling and hand instrumentation in vitro. J. Periodontal Res. 2005, 40, 48–52. [Google Scholar] [CrossRef]
- Braun, A.; Krause, F.; Nolden, R.; Frentzen, M. Subjective intensity of pain during the treatment of periodontal lesions with the VectorTM-system. J. Periodontal Res. 2003, 38, 135–140. [Google Scholar] [CrossRef]
- Kishida, M.; Sato, S.; Ito, K. Effects of a new ultrasonic scaler on fibroblast attachment to root surfaces: A scanning electron microscopy analysis. J. Periodontal Res. 2004, 39, 111–119. [Google Scholar] [CrossRef]
- Lee, S.J.; Wu, M.K.; Wesselink, P.R. The effectiveness of syringe irrigation and ultrasonics to remove debris from simulated irregularities within prepared root canal walls. Int. Endod. J. 2004, 37, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, L.W.M.; Gambarini, G.; Wu, M.K.; Wesselink, P.R. The influence of volume, type of irrigant and flushing method on removing artificially placed dentine debris from the apical root canal during passive ultrasonic irrigation. Int. Endod. J. 2006, 39, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Rödig, T.; Bozkurt, M.; Konietschke, F.; Hülsmann, M. Comparison of the Vibringe System with Syringe and Passive Ultrasonic Irrigation in Removing Debris from Simulated Root Canal Irregularities. J. Endod. 2010, 36, 1410–1413. [Google Scholar] [CrossRef] [PubMed]
- van der Sluis, L.W.M.; Vogels, M.P.; Verhaagen, B.; Macedo, R.; Wesselink, P.R. Study on the influence of refreshment/activation cycles and irrigants on mechanical cleaning efficiency during ultrasonic activation of the irrigant. J. Endod. 2010, 36, 737–740. [Google Scholar] [CrossRef]
- Klyn, S.L.; Kirkpatrick, T.C.; Rutledge, R.E. In vitro comparisons of debris removal of the EndoActivator system, the F file, ultrasonic irrigation, and NaOCl irrigation alone after hand-rotary instrumentation in human mandibular molars. J. Endod. 2010, 36, 1367–1371. [Google Scholar] [CrossRef]
- Bolles, J.A.; He, J.; Svoboda, K.K.H.; Schneiderman, E.; Glickman, G.N. Comparison of Vibringe, EndoActivator, and needle irrigation on sealer penetration in extracted human teeth. J. Endod. 2013, 39, 708–711. [Google Scholar] [CrossRef]
- Kanter, V.; Weldon, E.; Nair, U.; Varella, C.; Kanter, K.; Anusavice, K.; Pileggi, R. A quantitative and qualitative analysis of ultrasonic versus sonic endodontic systems on canal cleanliness and obturation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 809–813. [Google Scholar] [CrossRef]
- Mancini, M.; Cerroni, L.; Iorio, L.; Armellin, E.; Conte, G.; Cianconi, L. Smear layer removal and canal cleanliness using different irrigation systems (EndoActivator, EndoVac, and passive ultrasonic irrigation): Field emission scanning electron microscopic evaluation in an in vitro study. J. Endod. 2013, 39, 1456–1460. [Google Scholar] [CrossRef] [Green Version]
- Paragliola, R.; Franco, V.; Fabiani, C.; Mazzoni, A.; Nato, F.; Tay, F.R.; Breschi, L.; Grandini, S. Final rinse optimization: Influence of different agitation protocols. J. Endod. 2010, 36, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.A.; Walker, T.L.; Hutter, J.W.; Nicoll, B.K. Comparison of the cleaning efficacy of passive sonic activation and passive ultrasonic activation after hand instrumentation in molar root canals. J. Endod. 1999, 25, 735–738. [Google Scholar] [CrossRef] [Green Version]
- Arslan, H.; Akcay, M.; Capar, I.D.; Ertas, H.; Ok, E.; Uysal, B. Efficacy of needle irrigation, EndoActivator, and photon-initiated photoacoustic streaming technique on removal of double and triple antibiotic pastes. J. Endod. 2014, 40, 1439–1442. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Kim, J.R.; Ling, J.; Choi, K.K.; Pashley, D.H.; Tay, F.R. Review of contemporary irrigant agitation techniques and devices. J. Endod. 2009, 35, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Ohl, S.W.; Shrestha, A.; Khoo, B.C.; Kishen, A. Characterizing bubble dynamics created by high-intensity focused ultrasound for the delivery of antibacterial nanoparticles into a dental hard tissue. Proc. Inst. Mech. Eng. H 2010, 224, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, C.; Estevez, R.; Cisneros, R.; Paranjpe, A.; Cohenca, N. Efficacy of different irrigation and activation systems on the penetration of sodium hypochlorite into simulated lateral canals and up to working length: An in vitro study. J. Endod. 2010, 36, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Halford, A.; Ohl, C.D.; Azarpazhooh, A.; Basrani, B.; Friedman, S.; Kishen, A. Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro. J. Endod. 2012, 38, 1530–1534. [Google Scholar] [CrossRef]
- Goode, N.; Khan, S.; Eid, A.; Niu, L.-N.; Gosier, J.; Susin, L.F.; Pashley, D.H.; Tay, F.R. Wall shear stress effects of different endodontic irrigation techniques and systems. J. Dent. 2013, 41, 636–641. [Google Scholar] [CrossRef] [PubMed]
Group | Score 0 n/% | Score 1 n/% | Score 2 n/% | Score 3 n/% |
---|---|---|---|---|
SI + NaOCl | 60 100% | 0 | 0 | 0 |
SI + nanoparticles | 51 85% | 6 10% | 3 5% | 0 |
PUI + NaOCl | 59 93.3% | 1 6.7% | 0 | 0 |
PUI + nanoparticles | 17 28.3% | 3 5% | 12 20% | 28 46.7% |
Syringe irrigation (NI) + NaOCl | 10 35.7% | 0 | 8 28.6% | 10 35.7% |
Syringe irrigation (NI) + nanoparticles | 1 3.6% | 2 7.1% | 5 17.9% | 20 71.4% |
Group | Groups | p |
---|---|---|
NaOCl | SI vs. PUI | 0.876 |
nanoparticles | SI vs. PUI | 0.000 |
SI | NaOCl vs. nanoparticles | 0.157 |
PUI | NaOCl vs. nanoparticles | 0.000 |
syringe irrigation (NI) | NaOCl vs. nanoparticles | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hülsmann, M.; Beckmann, C.; Baxter, S. Debris Removal Using a Hydroxyapatite Nanoparticle-Containing Solution (Vector Polish) with Sonic or Ultrasonic Agitation. Materials 2021, 14, 4750. https://doi.org/10.3390/ma14164750
Hülsmann M, Beckmann C, Baxter S. Debris Removal Using a Hydroxyapatite Nanoparticle-Containing Solution (Vector Polish) with Sonic or Ultrasonic Agitation. Materials. 2021; 14(16):4750. https://doi.org/10.3390/ma14164750
Chicago/Turabian StyleHülsmann, Michael, Christoph Beckmann, and Steffi Baxter. 2021. "Debris Removal Using a Hydroxyapatite Nanoparticle-Containing Solution (Vector Polish) with Sonic or Ultrasonic Agitation" Materials 14, no. 16: 4750. https://doi.org/10.3390/ma14164750
APA StyleHülsmann, M., Beckmann, C., & Baxter, S. (2021). Debris Removal Using a Hydroxyapatite Nanoparticle-Containing Solution (Vector Polish) with Sonic or Ultrasonic Agitation. Materials, 14(16), 4750. https://doi.org/10.3390/ma14164750