New Bioactive Calcium Silicate Cement Mineral Trioxide Aggregate Repair High Plasticity (MTA HP)—A Systematic Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Review Questions
2.2. Information Sources and Search Strategy
2.3. Eligibility Criteria
3. Results
3.1. Quality Assessment
3.2. Description of the Results
4. Discussion
4.1. Physicochemical Properties
4.1.1. Setting Time
4.1.2. Flow and Dimensional Change
4.1.3. Solubility and Water Sorption
4.1.4. Film Thickness, Bond and Compressive Strength
4.1.5. Marginal Adaptation and Microleakage
4.1.6. Main Compositional Phases and pH
4.1.7. The Release of Calcium Ions
4.2. Biological Properties
4.2.1. Inflammatory Response
4.2.2. Cytotoxicity
4.2.3. Apoptosis/Necrosis
4.2.4. Cellular Adhesion
4.2.5. Mineralization
4.2.6. Antibacterial Effect
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jitaru, S.; Hodisan, I.; Timis, L.; Lucian, A.; Bud, M. The use of bioceramics in endodontics-literature review. Med. Pharm. Rep. 2016, 89, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Emara, R.; Elhennawy, K.; Schwendicke, F. Effects of calcium silicate cements on dental pulp cells: A systematic review. J. Dent. 2018, 77, 18–36. [Google Scholar] [CrossRef] [PubMed]
- Giraud, T.; Jeanneau, C.; Bergmann, M.; Laurent, P.; About, I. Tricalcium Silicate Capping Materials Modulate Pulp Healing and Inflammatory Activity In Vitro. J. Endod. 2018, 44, 1686–1691. [Google Scholar] [CrossRef] [Green Version]
- Sanz, J.L.; Rodríguez-Lozano, F.J.; Llena, C.; Sauro, S.; Forner, L. Bioactivity of Bioceramic Materials Used in the Dentin-Pulp Complex Therapy: A Systematic Review. Materials 2019, 12, 1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.; Carvalho, N.K.; Zanon, M.; Senna, P.M.; De-Deus, G.; Zuolo, M.L.; Zaia, A.A. Push-out bond strength of MTA HP, a new high-plasticity calcium silicate-based cement. Braz. Oral Res. 2016, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, C.M.A.; Sassone, L.M.; Gonçalves, A.S.; De Carvalho, J.J.; Tomás-Catalá, C.J.; García-Bernal, D.; Oñate-Sánchez, R.E.; Rodríguez-Lozano, F.J.; Silva, E. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci. Rep. 2019, 9, 3933. [Google Scholar] [CrossRef]
- Macwan, C.S.; Deshpande, A. Mineral trioxide aggregate (MTA) in dentistry: A review of literature. J. Oral Res. Rev. 2014, 6, 71. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.; Dhillon, J.S.; Batra, M.; Saini, M. MTA versus Biodentine: Review of Literature with a Comparative Analysis. J. Clin. Diagn. Res. 2017, 11, ZG01–ZG05. [Google Scholar] [CrossRef] [PubMed]
- ElReash, A.A.; Hamama, H.; Abdo, W.; Wu, Q.; El-Din, A.Z.; Xiaoli, X. Biocompatibility of new bioactive resin composite versus calcium silicate cements: An animal study. BMC Oral Health 2019, 19, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kaup, M.; Schäfer, E.; Dammaschke, T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kunert, M.; Lukomska-Szymanska, M. Bio-Inductive Materials in Direct and Indirect Pulp Capping—A Review Article. Materials 2020, 13, 1204. [Google Scholar] [CrossRef] [Green Version]
- Barczak, K.; Palczewska-Komsa, M.; Lipski, M.; Chlubek, D.; Buczkowska-Radlińska, J.; Baranowska-Bosiacka, I. The Influence of New Silicate Cement Mineral Trioxide Aggregate (MTA Repair HP) on Metalloproteinase MMP-2 and MMP-9 Expression in Cultured THP-1 Macrophages. Int. J. Mol. Sci. 2020, 22, 295. [Google Scholar] [CrossRef]
- Tawil, P.Z.; Duggan, D.J.; Galicia, J. Mineral trioxide aggregate (MTA): Its history, composition, and clinical applications. Compend. Contin. Educ. Dent. 2015, 36, 247–264. [Google Scholar]
- Casadei, B.D.A.; Lara-Mendes, S.T.O.; Barbosa, C.D.F.M.; Araújo, C.V.; De Freitas, C.A.; Machado, V.C.; Santa-Rosa, C.C. Access to original canal trajectory after deviation and perforation with guided endodontic assistance. Aust. Endod. J. 2020, 46, 101–106. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (MINORS ): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Elkhadem, A.; Mickan, S.; Richards, D. Adverse events of surgical extrusion in treatment for crown-root and cervical root fractures: A systematic review of case series/reports. Dent. Traumatol. 2013, 30, 1–14. [Google Scholar] [CrossRef]
- Cosme-Silva, L.; Dal-Fabbro, R.; Gonçalves, L.D.O.; Prado, A.S.D.; Plazza, F.A.; Viola, N.V.; Cintra, L.T.A.; Filho, J.E.G. Hypertension affects the biocompatibility and biomineralization of MTA, High-plasticity MTA, and Biodentine®. Braz. Oral Res. 2019, 33, e060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delfino, M.; Jampani, J.; Lopes, C.; Guerreiro-Tanomaru, J.; Tanomaru-Filho, M.; Sasso-Cerri, E.; Cerri, P. Comparison of Bio-C Pulpo and MTA Repair HP with White MTA: Effect on liver parameters and evaluation of biocompatibility and bioactivity in rats. Int. Endod. J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Benetti, F.; Gomes-Filho, J.E.; Lopes, J.M.A.; Barbosa, J.G.; Jacinto, R.C.; Cintra, L.T.A. In vivo biocompatibility and biomineralization of calcium silicate cements. Eur. J. Oral Sci. 2018, 126, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Benetti, F.; Queiroz, ÍO.D.A.; Cosme-Silva, L.; Conti, L.C.; De Oliveira, S.H.P.; Cintra, L.T.A. Cytotoxicity, Biocompatibility and Biomineralization of a New Ready-for-Use Bioceramic Repair Material. Braz. Dent. J. 2019, 30, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, A.A.P.; Santos, T.D.; Cunha, J.L.S.; Matos, F.D.S.; Júnior, R.L.C.D.A.; Ribeiro, M.A.G. Effect of laser photobiomodulation associated with a bioceramic cement on the repair of bone tissue in the femur of rats. J. Photochem. Photobiol. B 2020, 205, 111813. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Catalá, C.J.; Collado-González, M.D.M.; García-Bernal, D.; Oñate-Sánchez, R.E.; Forner, L.; Llena, C.; Lozano, A.; Castelo-Baz, P.; Moraleda, J.M.; Rodríguez-Lozano, F.J. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int. Endod. J. 2017, 50, e63–e72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomás-Catalá, C.J.; Collado-González, M.; García-Bernal, D.; Oñate-Sánchez, R.E.; Forner, L.; Llena, C.; Lozano, A.; Moraleda, J.M.; Rodríguez-Lozano, F.J. Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. J. Endod. 2018, 44, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, M.B.; Torres, F.F.E.; Rodrigues, E.M.; Viola, K.S.; Bosso-Martelo, R.; Chavez-Andrade, G.M.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dent. Mater. 2021, 37, 311–320. [Google Scholar] [CrossRef]
- Collado-González, M.D.M.; Garcia, S.L.; García-Bernal, D.; Oñate-Sánchez, R.E.; Tomás-Catalá, C.J.; Moraleda, J.M.; Lozano, A.; Forner, L.; Rodríguez-Lozano, F.J. Biological effects of acid-eroded MTA Repair HP and ProRoot MTA on human periodontal ligament stem cells. Clin. Oral Investig. 2019, 23, 3915–3924. [Google Scholar] [CrossRef] [PubMed]
- ElReash, A.A.; Hamama, H.; Eldars, W.; Lingwei, G.; El-Din, A.Z.; Xiaoli, X. Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health 2019, 19, 1–10. [Google Scholar] [CrossRef] [Green Version]
- ElReash, A.A.; Hamama, H.; Grawish, M.; Saeed, M.; El-Din, A.M.Z.; Shahin, M.A.; Zhenhuan, W.; Xiaoli, X. A laboratory study to test the responses of human dental pulp stem cells to extracts from three dental pulp capping biomaterials. Int. Endod. J. 2021. [Google Scholar] [CrossRef]
- Galarça, A.D.; Rosa, W.L.D.O.D.; Da Silva, T.M.; Lima, G.D.S.; Carreño, N.L.V.; Pereira, T.M.; Guedes, O.A.; Borges, A.H.; da Silva, A.F.; Piva, E. Physical and Biological Properties of a High-Plasticity Tricalcium Silicate Cement. BioMed Res. Int. 2018, 2018, 8063262. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, B.M.; Prati, C.; Duarte, M.A.H.; Bramante, C.M.; Gandolfi, M.G. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. J. Appl. Oral Sci. 2018, 26, e2017115. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, B.A.; Frota, L.M.A.; Taguatinga, D.T.; Vivan, R.; Camilleri, J.; Duarte, M.A.H.; De Vasconcelos, B.C. Influence of ultrasonic agitation on bond strength, marginal adaptation, and tooth discoloration provided by three coronary barrier endodontic materials. Clin. Oral Investig. 2019, 23, 4113–4122. [Google Scholar] [CrossRef]
- De Carvalho, F.M.A.; Silva-Sousa, Y.T.C.; Miranda, C.E.S.; Calderon, P.H.M.; Barbosa, A.F.S.; De Macedo, L.M.D.; Rached-Junior, F.J.A. Influence of Ultrasonic Activation on the Physicochemical Properties of Calcium Silicate-Based Cements. Int. J. Dent. 2021, 2021, 6697988. [Google Scholar] [CrossRef]
- Çırakoğlu, S.; Baddal, B.; Islam, A. The Effectiveness of Laser-Activated Irrigation on the Apical Microleakage Qualities of MTA Repair HP and NeoMTA Plus in Simulated Immature Teeth: A Comparative Study. Materials 2020, 13, 3287. [Google Scholar] [CrossRef] [PubMed]
- Meraji, N.; Ahmadi, E. The effect of bleaching agents on the microstructure and surface microhardness of three calcium silicate-based barrier materials. Iran. Endod. J. 2020, 15, 23–30. [Google Scholar] [CrossRef]
- Metlerska, J.; Dammaschke, T.; Lipski, M.; Fagogeni, I.; Machoy-Mokrzyńska, A.; Nowicka, A. Effect of Citric Acid on Color Changes of Calcium Silicate-Based Cements an In Vitro Study. Appl. Sci. 2021, 11, 2339. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, M.; Segura-Egea, J.; Diaz-Cuenca, A. Physicochemical parameters-hydration performance relationship of the new endodontic cement MTA Repair HP. J. Clin. Exp. Dent. 2019, 11, e739–e744. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, M.D.C.; Segura-Egea, J.J.; Díaz-Cuenca, A. Higher hydration performance and bioactive response of the new endodontic bioactive cement MTA HP repair compared with ProRoot MTA white and NeoMTA plus. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2109–2120. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, M.C.; Segura-Egea, J.J.; Díaz-Cuenca, A. A Microstructure Insight of MTA Repair HP of Rapid Setting Capacity and Bioactive Response. Materials 2020, 13, 1641. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Sánchez, M.D.C.; Segura-Egea, J.J.; Díaz-Cuenca, A. MTA HP Repair stimulates in vitro an homogeneous calcium phosphate phase coating deposition. J. Clin. Exp. Dent. 2019, 11, e322–e326. [Google Scholar] [CrossRef]
- Duarte, M.A.H.; Minotti, P.G.; Rodrigues, C.T.; Ordinola-Zapata, R.; Bramante, C.M.; Filho, M.T.; Vivan, R.R.; de Moraes, I.G.; de Andrade, F.B. Effect of Different Radiopacifying Agents on the Physicochemical Properties of White Portland Cement and White Mineral Trioxide Aggregate. J. Endod. 2012, 38, 394–397. [Google Scholar] [CrossRef]
- Nekoofar, M.H.; Aseeley, Z.; Dummer, P.M.H. The effect of various mixing techniques on the surface microhardness of mineral trioxide aggregate. Int. Endod. J. 2010, 43, 312–320. [Google Scholar] [CrossRef]
- Camilleri, J. Hydration mechanisms of mineral trioxide aggregate. Int. Endod. J. 2007, 40, 462–470. [Google Scholar] [CrossRef] [Green Version]
- American Dental Association. ANSI/ADA Specification 57; Section 5.8; American Dental Association: Chicago, IL, USA, 2000. [Google Scholar]
- Viapiana, R.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; Camilleri, J. Investigation of the Effect of Sealer Use on the Heat Generated at the External Root Surface during Root Canal Obturation Using Warm Vertical Compaction Technique with System B Heat Source. J. Endod. 2014, 40, 555–561. [Google Scholar] [CrossRef]
- Bodanezi, A.; Carvalho, N.; Silva, D.; Bernardineli, N.; Bramante, C.; Garcia, R.B.; De Moraes, I.G. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement. J. Appl. Oral Sci. 2008, 16, 127–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basturk, F.B.; Nekoofar, M.H.; Günday, M.; Dummer, P.M. Effect of Various Mixing and Placement Techniques on the Flexural Strength and Porosity of Mineral Trioxide Aggregate. J. Endod. 2013, 40, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M. Mineral Trioxide Aggregate: A Comprehensive Literature Review—Part I: Chemical, Physical, and Antibacterial Properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef]
- Scelza, M.Z.; Da Silva, D.; Scelza, P.; De Noronha, F.; Barbosa, I.B.; Souza, E.; De Deus, G. Influence of a new push-out test method on the bond strength of three resin-based sealers. Int. Endod. J. 2014, 48, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Huffman, B.P.; Mai, S.; Pinna, L.; Weller, R.N.; Primus, C.M.; Gutmann, J.L.; Pashley, D.H.; Tay, F.R. Dislocation resistance of ProRoot Endo Sealer, a calcium silicate-based root canal sealer, from radicular dentine. Int. Endod. J. 2009, 42, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wei, M. Biomineralization of Collagen-Based Materials for Hard Tissue Repair. Int. J. Mol. Sci. 2021, 22, 944. [Google Scholar] [CrossRef]
- Kokubo, T. Bioactive glass ceramics: Properties and applications. Biomaterials 1991, 12, 155–163. [Google Scholar] [CrossRef]
- Hilton, T.J.; Ferracane, J.L.; Mancl, L. Northwest Practice-based Research Collaborative in Evidence-based Dentistry (NWP). Comparison of CaOH with MTA for direct pulp capping: A PBRN randomized clinical trial. J. Dent. Res. 2013, 92 (Suppl. 7), 16S–22S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandolfi, M.G.; Siboni, F.; Botero, T.; Bossù, M.; Riccitiello, F.; Prati, C. Calcium Silicate and Calcium Hydroxide Materials for Pulp Capping: Biointeractivity, Porosity, Solubility and Bioactivity of Current Formulations. J. Appl. Biomater. Funct. Mater. 2015, 13, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Formosa, L.M.; Mallia, B.; Camilleri, J. The effect of curing conditions on the physical properties of tricalcium silicate cement for use as a dental biomaterial. Int. Endod. J. 2011, 45, 326–336. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Taddei, P.; Tinti, A.; Dorigo, E.D.S.; Prati, C. Alpha-TCP improves the apatite-formation ability of calcium-silicate hydraulic cement soaked in phosphate solutions. Mater. Sci. Eng. C 2011, 31, 1412–1422. [Google Scholar] [CrossRef]
- Van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef]
- Camilleri, J. Staining Potential of Neo MTA Plus, MTA Plus, and Biodentine Used for Pulpotomy Procedures. J. Endod. 2015, 41, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Al-Sa’Eed, O.R.; Al-Hiyasat, A.S.; Darmani, H. The Effects of Six Root-end Filling Materials and Their Leachable Components on Cell Viability. J. Endod. 2008, 34, 1410–1414. [Google Scholar] [CrossRef]
- Akbulut, M.B.; Arpaci, P.U.; Eldeniz, A.U. Effects of novel root repair materials on attachment and morphological behaviour of periodontal ligament fibroblasts: Scanning electron microscopy observation. Microsc. Res. Tech. 2016, 79, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Pires, C.W.; Botton, G.; Cadoná, F.C.; Machado, A.K.; Azzolin, V.F.; da Cruz, I.; Sagrillo, M.; Praetzel, J.R. Induction of cytotoxicity, oxidative stress and genotoxicity by root filling pastes used in primary teeth. Int. Endod. J. 2015, 49, 737–745. [Google Scholar] [CrossRef]
Material | Producer | Composition | Properties |
---|---|---|---|
Pro Root MTA | Dentsply Sirona, Tulsa, USA | Powder: tricalcium silicate (CaO)3·SiO2 dicalcium silicate (CaO)2·SiO2 tricalcium aluminate (CaO)3·Al2O3 bismuth oxide Bi2O3 gypsum CaSO4·2H2O Liquid: distilled water H2O | The handling can be difficult, the initial setting time is long (78 min), the use in the visible crown area may lead to tooth discoloration, the lowest radiopacity of all MTA materials |
MTA Repair HP | Angelus, Londrina, Brasil | Powder: Tricalcium Silicate 3CaOꞏSiO2, Dicalcium Silicate 2CaOꞏSiO2, Tricalcium Aluminate 3CaOꞏAl2O3, Calcium Oxide CaO, Calcium Tungstate CAWO4 Liquid: Water and Plasticizer | Material solidifies when kept in a wet environment after spatulation, the initial setting time is approximately 15 min; absence of dental discoloration due to the CaWO4 radiopacifier used. radiopacity: nearly matches that of gutta-percha. More radiopaque thanPro Root MTA; |
Database | Filtres | Number of Phrase | Search Phrases |
---|---|---|---|
Medline (PubMed) (69) | Abstract Free full text Full text Clinical Trial Journal Article Randomized Controlled Trial | 1 | (teeth) OR (tooth) Filters: Abstract, Free full text, Full text, Clinical Trial, Journal Article, Randomized Controlled Trial |
- | 2 | (((((MTA HP[Title/Abstract]) OR (MTA high repair[Title/Abstract])) OR (MTA high plasticity[Title/Abstract])) OR (MTA repair HP[Title/Abstract]) AND ((ffrft[Filter]) AND (fha[Filter]) AND (clinicaltrial[Filter] OR journalarticle[Filter] OR randomizedcontrolledtrial[Filter]) AND (fft[Filter]) OR (Calcium Silicate-Based))))) Filters: Abstract, Free full text, Full text, Clinical Trial, Journal Article, Randomized Controlled Trial | |
- | 3 | (solubility) OR (Ca2+ ions release)) OR (Bond strength)) OR (Film thickness)) OR (Adhesive)) OR (discoloration)) OR (Radiopacity)) OR (Setting time)) OR (Inflammatory response)) OR (Cytotoxicity)) OR (Apoptosis)) OR (Mineralization)) OR (Antimicrobal effect)) OR (physicochemical properties)) OR (chemical properties)) OR (biological properities)) OR (properities) Filters: Abstract, Free full text, Full text, Clinical Trial, Journal Article, Randomized Controlled Trial | |
- | 1 AND 2 AND 3 | (teeth) OR (tooth) AND(MTA HP[Title/Abstract]) OR (MTA high repair[Title/Abstract]) OR (MTA high plasticity[Title/Abstract])) OR (MTA repair HP[Title/Abstract]) OR (Calcium Silicate-Based) AND (solubility) OR (Ca2+ ions release)) OR (Bond strength)) OR (Film thickness)) OR (Adhesive) OR (discoloration)) OR (Radiopacity)) OR (Setting time)) OR (Inflammatory response) OR (Cytotoxicity)) OR (Apoptosis)) OR (Mineralization)) OR (Antimicrobal effect) OR (physicochemical properties) OR (chemical properties)) OR (biological properties) OR (properties) | |
Web of Science (10) | Web of Science Categories: Dentistry Oral Surgery Medicine Document Types: Article | 1 | TOPIC: (teeth) OR TOPIC: (tooth) |
- | - | 2 | (TS = (MTA HP OR MTA high plasticity OR MTA repair HP) |
- | - | 3 | (TS = (solubility OR Ca2+ ions release OR Bond strength OR Film thickness OR Adhesive OR discoloration OR Radiopacity OR Setting time OR Inflammatory response OR Cytotoxicity OR Apoptosis OR Mineralization OR Antimicrobal effect OR physicochemical properties OR chemical properties OR biological properties OR properties) |
- | - | 1 AND 2 AND 3 | (TOPIC: (teeth) OR TOPIC: (tooth) AND (TS = (MTA HP OR MTA high plasticity OR MTA repair HP) AND (TS = (solubility OR Ca2+ ions release OR Bond strength OR Film thickness OR Adhesive OR discoloration OR Radiopacity OR Setting time OR Inflammatory response OR Cytotoxicity OR Apoptosis OR Mineralization OR Antimicrobal effect OR physicochemical properties OR chemical properties OR biological properties OR properties) |
Scopus (8]) Wiley Online Library (134) | Language: English Subjects: Dentistry Journals Subjects: Dentistry | 1 | teeth OR tooth |
- | - | 2 | MTA HP OR MTA high plasticity OR MTA repair HP |
- | - | 3 | solubility OR ca2+ AND ions AND release OR bond AND strength OR film AND thickness OR adhesive OR discoloration OR radiopacity OR setting AND time OR inflammatory AND response OR cytotoxicity OR apoptosis OR mineralization OR antimicrobial AND effect OR physicochemical AND properties OR chemical AND properties OR biological AND properties OR properties |
- | - | 1 AND 2 AND 3 | (teeth OR tooth) AND (mta AND hp OR mta AND high AND plasticity OR mta AND repair AND hp) AND (solubility OR ca2+ AND ions AND release OR bond AND strength OR film AND thickness OR adhesive OR discoloration OR radiopacity OR setting AND time OR inflammatory AND response OR cytotoxicity OR apoptosis OR mineralization OR antimicrobial AND effect OR physicochemical AND properties OR chemical AND properties OR biological AND properties OR properties) |
Science Direct (121) Dentistry and Oral Sciences Source (15) | Subject areas: Medicine and Dentistry Article type: Research articles Language: English | 1 | Teeth OR Tooth |
- | - | 2 | MTA HP OR MTA high plasticity OR MTA repair HP |
- | - | 3 | Properties |
- | - | 1 AND 2 AND 3 | (Teeth OR Tooth) AND (properties) AND (MTA HP OR MTA high plasticity OR MTA repair HP) |
Criteria | Included | Excluded |
---|---|---|
Full text | Available | Unavailable |
Publication language | English | Other |
Type of publication | Journal article | Books, documents |
Type of research | Clinical trail | - |
Randomized controlled | ||
Research articles | ||
Review | ||
Meta-analysis | ||
Case Report | ||
Subject area | Dentistry and oral surgery medicine | Other |
Materials | ||
Publication stage | Final, In press | Other |
Source | Ferreira et al., 2019 [6] | El Reash et al., 2019 [9] | Cosme-Silva et al., 2019 [18] | Delfino et al., 2021 [19] | Benetti et al., 2018 [20] | Benetti et al., 2019 [21] | Macedo et al., 2020 [22] |
---|---|---|---|---|---|---|---|
Clear aim | 2 | 2 | 2 | 2 | 1 | 1 | 2 |
Clear MTA HP application protocol | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Inclusion of consecutive patients, animals | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Collection of data | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Justification of sample size | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Follow-up period appropriate to the aim of the study | 2 | 2 | 2 | 2 | 1 | 1 | 2 |
Endpoints appropriate to the aim of the study | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Blinded analysis | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Study quality | good | good | good | good | fair | fair | good |
Source | Barczak et al., 2021 [12] | Benetti et al., 2019 [21] | Tomás-Catalá et al., 2017 [23] | Tomás-Catalá et al., 2018 [24] | Queiroz et al., 2021 [25] | Collado-Gonzlez et al., 2016 [26] | El Reash et al., 2019 [27] | El Reash et al., 2021 [28] |
---|---|---|---|---|---|---|---|---|
Clear aim | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 |
Clear MTA HP application protocol | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Inclusion of consecutive patients, animals | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Collection of data | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Justification of sample size | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Follow-up period appropriate to the aim of the study | 2 | 1 | 0 | 2 | 2 | 2 | 1 | 1 |
Endpoints appropriate to the aim of the study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Blinded analysis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An adequate control group | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 |
Contemporary groups | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 |
Baseline equivalence of groups | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 |
Adequate statistical analyses | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Study quality | good | good | fair | fair | good | good | good | good |
Material Characteristics | Activation Ultrasonic | Time Period | Value (Mean± Standard Deviation) | Source |
---|---|---|---|---|
Setting time (min) | no | 120 ± 10 s | 12.20 ± 1.09 | Acris De Carvalho et al., 2021 [32] |
yes | 120 ± 10 s | 10.00 ± 0.70 | ||
- | 30 s intervals | 13.0 ± 1.0 | Galarça et al., 2018 [29] | |
- | - | 85 ± 2.64 | Guimarães et al., 2018 [30] | |
Flow (mm) | no | 180 ± 5 s | 9.98 ± 0.18 | Acris De Carvalho et al., 2021 [32] |
yes | 180 ± 5 s | 10.95 ± 0.14 | ||
10 min | 18.15 ± 1.10 | Galarça et al., 2018 [29] | ||
Dimensional change (%) | no | 30 days | 1.72 ± 0.62 | Acris De Carvalho et al., 2021 [32] |
yes | 30 days | 3.67 ± 1.97 | ||
Solubility (%) | no | 24 h | −3.66 ± 1.01 | |
yes | 24 h | −0.86 ± 0.89 | ||
- | 24 h | −2.77 ± 1.18 | Galarça et al., 2018 [29] | |
- | - | 8.18 ± 1.74 | Guimarães et al., 2018 [30] | |
Water absorption (%) | - | 24 h | 16.32 ± 2.92 | Galarça et al., 2018 [29] |
- | - | 14.96 ± 0.95 | Guimarães et al., 2018 [30] | |
Ca2 + ions release (mg/L) | no | - | 28.76 ± 0.93 | Acris De Carvalho et al., 2021 [32] |
yes | - | 35.85 ± 5.07 | ||
- | - | 14.80 ± 1.58 | Guimarães et al., 2018 [30] | |
Bond strength (Mpa) | no | - | 2.54 ± 1.26 | Aguiar et al., 2019 [31] |
yes | - | 4.13 ± 2.43 | ||
Film thickness (μm) 150 N was applied | - | 10 min | 194 ± 89 | Galarça et al., 2018 [29] |
Exterior Volume (cm3) | - | - | 0.0877 ± 0.0045 | Guimarães et al., 2018 [30] |
Volume of Open Pores (cm3) | - | - | 0.0258 ± 0.0006 | |
Volume of Impervious Portion (cm3) | -- | - | 0.0619 ± 0.0044 | |
Apparent Porosity (Vop/V %) | - | - | 29.45 ± 1.49 | |
Failure type- Adhesive (%) | no | - | 56.25 | Aguiar et al., 2019 [31] |
Failure type- Adhesive (%) | yes | - | 25 | |
Failure type- Cohesive (%) | no | - | 37.5 | |
Failure type- Cohesive (%) | yes | - | 25 | |
Failure type-Mixed (adhesive and cohesive) (%) | yes | - | 6.25 | |
Failure type-Mixed (adhesive and cohesive) (%) | no | - | 50 | |
interface of adaptation to the dentin wall (% of gaps) | no | - | 28.58 (8.01–63.73) Median (min.-max.) | |
interface of adaptation to the dentin wall (% of gaps) | yes | - | 17.87 (0.0–43.26) Median (min.-max.) | |
discoloration | yes | 7 days | 2.77 ± 1.12 | |
no | 7 days | 1.95 ± 1.38 | ||
yes | 15 days | 2.70 ± 0.74 | ||
no | 15 days | 1.75 ± 1.46 | ||
yes | 30 days | 3.26 ± 1.47 | ||
no | 30 days | 1.44 ± 1.33 | ||
yes | 180 days | 2.60 ± 0.79 | ||
no | 180 days | 1.68 ± 0.67 | ||
Evaluation of Microleakage values of leaked glucose (mM/L) | - | 1 day | 0.083 ± 0.005 | Çırakoğlu et al., 2020 [33] |
- | 10 days | 3.644 ± 6.164 | ||
- | 20 days | 5.043 ± 3.663 | ||
Radiopacity (mm/Al) | - | - | 3.04 ± 0.16 | Galarça et al., 2018 [29] |
- | - | 4.50 ± 0.46 | Guimarães et al., 2018 [30] |
Biological Parameter | Additional Parameter | Results | Type of Research | Period Time | Tissue/Cell | Species | Number of Samples | Source |
---|---|---|---|---|---|---|---|---|
Inflammatory response | - | no activation of THP-1 monocytes not alter MMP-2 and MMP-9 protein expression | In vitro | 48 h | monocytes and macrophages from THP-1 cells | Human | - | Barczak et al., 2021 [12] |
- | discrete | In vivo | 4 weeks | skin and subcutaneous tissues | Wistar rats | 25 | Elreash et al., 2019 [9] | |
- | moderate-few inflamation | 30–90 days | 8 | Benetti et al., 2019 [21] | ||||
- | no response | 30 days | 8 | Benetti et al., 2018 [20] | ||||
Hypertension Normo-tention | increase inflammation decrease inflammation | 30 days | 16 sponta-neously hyper-tensive (SHR) 16 normo-tensive (NT) | Cosme-Silva et al., 2019 [18] | ||||
Cytotoxicity | - | cell viability similar or higher than the negative control | In vitro | 24 h | osteoblastic cells | Human | 96 plates | Queiroz et al., 2021 [25] |
- | a significant increase in compare to control group (coulture complete medium without MTA HP) | 5 days | dental pulp stem cells | 21 | El Reash et al. 2021 [28] | |||
- | no cytotoxic effect | 72 h | dental pulp stem cells | 10 | Tomás-Catalá et al., 2017 [23] | |||
pH 5,2 dilutions 1:1 1:2 1:4 | depends on the pH and degree of material dilution. | 72 h | periodontal ligament stem cells | 10 | Collado-Gonzlez et al., 2016 [26] | |||
depends on the degree of material dilution. | 72 h | bone primary osteoblasts | 10 | Ferreira et al. 2019 [6] | ||||
depends on the degree of material dilution. | 48 h | Fibroblast-like cells | Mouse | 96 plates | Benetti et al., 2019 [21] | |||
discrete inflammation | In vivo | 30 days | skin and subcutaneous tissues | Wistar rats | 10 | Ferreira et al. 2019 [6] | ||
Apoptosis/necrosis | - | >94% of viable cells | In vitro | 72 h | bone primary osteoblasts | Human | 10 | Ferreira et al. 2019 [6] |
96% of viable cells | 72 h | periodontal ligament stem cells | 10 | Collado-Gonzlez et al., 2016 [26] | ||||
- | discrete | In vivo | 4 weeks | Skin and ubcutaneous tissues | Wistar rats | 25 | Elreash et al., 2019 [9] | |
Cell attachment on material | dilutions 1:1 1:2 1:4 | good attachment to the material | In vitro | 72 h | bone primary osteoblasts | Human | 10 | Ferreira et al. 2019 [6] |
- | Worse attachment than Neo MTA and Biodentine | 72 h | dental pulp stem cells | 10 | Tomás-Catalá et al., 2017 [23] | |||
- | good attachment to the material | 7 days | dental pulp stem cells | 21 | El Reash et al. 2021 [28] | |||
pH 5,2 dilutions 1:1 1:2 1:4 | non depends on pH and degree of material dilution. | 72 h | periodontal ligament stem cells | 10 | Collado-Gonzlez et al., 2016 [26] | |||
Minera-lization | significant increases in the amounts of mineralizing nodules formed compare to control group | In vitro | 7 days | dental pulp stem cells | Human | 21 | El Reash et al. 2021 [28] | |
more mineralization noodles than control group | 24 h | osteoblastic cells | 96 plates | Queiroz et al., 2021 [25] | ||||
Hypertension Normo-tension | decrease biomineralization increase biomineralization | In vivo | 30 days | skin and subcutaneous tissues | Wistar rats | 16 spontaneously hypertensive (SHR) 16 normotensive (NT) | El Reash et al. 2021 [28] | |
- | 100% biomineralization ability | 30–90 days | skin and subcutaneous tissues | 8 | Benetti et al., 2019 [21] | |||
100% biomineralization ability | 30 days | skin and subcutaneous tissues | 8 | Benetti et al. 2018 [20] | ||||
Antimicrobal effect | E. faecalis | positive activity | In vitro | 48 h | osteoblastic cells | Human | 96 plates | Queiroz et al., 2021 [25] |
E. faecalis E. faecum S. aureus P. gingivalis C. albicans A. israelii P. anaerobius S. mutans | positive activity positive activity positive activity positive activity positive activity negative activity negative activity negative activity | 48 h | dental pulp stem cells | 21 | El Reash et al., 2019 [27] |
Nr | Source | In Vitro/In Vivo | Physicochemical Properties | Biological Properities | Type of Research |
---|---|---|---|---|---|
1. | Silva et al., 2016 [5] | In vitro | Bond strength | - | Comparative Study |
2. | Galarça et al., 2018 [29] | In vitro | Film thickness, flow, setting time, compressive strength | Cell viability | Research Article |
3. | Guimarães et al., 2018 [30] | - | Radiopacity, calcium release, water sorption, solubility | - | Comparative Study |
4. | Aguair et al., 2019 [31] | In vitro | Bond strength, marginal adaptation, tooth discoloration | - | Comparative Study |
5. | Acris De Carvalho et al., 2021 [32] | - | Setting time, flow, dimensional change, solubility | - | Comparative Study |
6. | Çırakoğlu et al., 2020 [33] | In vitro | Microleakage | - | Comparative Study |
7. | Meraji et al., 2020 [34] | In vitro | Microhardness, microstructure | - | Comparative Study |
8. | Metlerska et al., 2021 [35] | In vitro | Color Changes | - | Comparative Study |
9. | Jiménez-Sánchez et al., 2019 [36] | - | Chemical composition, Hydration performance | - | Research Article |
10. | Jiménez-Sánchez et al., 2020 [37] | In vitro | Hydration performance | Bioactive response | Comparative Study |
11. | Jiménez-Sánchez et al., 2019 [38] | In vitro | Microstructural features | Bioactive response | Research Article |
12. | Jiménez-Sánchez et al., 2019 [39] | In vitro | - | Mineralization | Research Article |
13. | Barczak et al., 2021 [12] | In vitro | - | Inflammatory response | Research Article |
14. | Tomás-Catalá et al., 2017 [23] | In vitro | Chemical composition | Cell viability, cell migration, cell morphology, cell attachment | Comparative Study |
15. | Tomás-Catalá et al., 2018 [24] | In vitro | Chemical composition | Cell viability, cell migration, cell morphology, cell attachment | Comparative Study |
16. | Queiroz et al., 2021 [25] | In vitro | Setting time, radiopacity, pH, solubility | Cytotoxicity, cell bioactivity, alkaline phosphatase activity, Alzarin red staining (ARS), real time PCR (qPCR), antibacterial activity | Comparative Study |
17. | Collado-Gonzlez et al., 2016 [26] | In vitro | Chemical composition | Cell viability, aapoptosis, cell attachment | Comparative Study |
18. | El Reash et al., 2019 [27] | In vitro | pH | Antimicrobial effect | Comparative Study |
19. | El Reash et al., 2021 [28] | In vitro | - | Cytotoxicity, Cell attachment, mineralization | Comparative Study |
20. | Benetti et al., 2019 [21] | In vitro/In vivo | - | Cytotoxicity, biocompatibility, biomineralization | Comparative Study |
21. | Benetti et al., 2018 [20] | In vivo | - | Biocompatibility, biomineralization | Comparative Study |
22. | Ferreira et al., 2019 [6] | In vivo | Setting time, flow, radiopacity, solubility | Cytotoxicity, Apoptosis, cell adhesion | Comparative Study |
23. | El Reash et al., 2019 [9] | In vivo | - | Inflammatory response | Comparative Study |
24. | Cosme-Silva et al., 2019 [18] | In vivo | - | Biocompatibility, biomineralization | Comparative Study |
25. | Delfino et al., 2021 [19] | In vivo | - | Bioactivity, biocompatibility | Comparative Study |
26. | Macedo et al., 2020 [22] | In vivo | - | Biomineralization | Research Article |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palczewska-Komsa, M.; Kaczor-Wiankowska, K.; Nowicka, A. New Bioactive Calcium Silicate Cement Mineral Trioxide Aggregate Repair High Plasticity (MTA HP)—A Systematic Review. Materials 2021, 14, 4573. https://doi.org/10.3390/ma14164573
Palczewska-Komsa M, Kaczor-Wiankowska K, Nowicka A. New Bioactive Calcium Silicate Cement Mineral Trioxide Aggregate Repair High Plasticity (MTA HP)—A Systematic Review. Materials. 2021; 14(16):4573. https://doi.org/10.3390/ma14164573
Chicago/Turabian StylePalczewska-Komsa, Mirona, Kinga Kaczor-Wiankowska, and Alicja Nowicka. 2021. "New Bioactive Calcium Silicate Cement Mineral Trioxide Aggregate Repair High Plasticity (MTA HP)—A Systematic Review" Materials 14, no. 16: 4573. https://doi.org/10.3390/ma14164573
APA StylePalczewska-Komsa, M., Kaczor-Wiankowska, K., & Nowicka, A. (2021). New Bioactive Calcium Silicate Cement Mineral Trioxide Aggregate Repair High Plasticity (MTA HP)—A Systematic Review. Materials, 14(16), 4573. https://doi.org/10.3390/ma14164573