CFD Numerical Modelling of a PV–TEG Hybrid System Cooled by Air Heat Sink Coupled with a Single-Phase Inverter
Abstract
:1. Introduction
2. Materials and Methods
2.1. PV Model
2.2. TEG Model
2.3. Heat Sink Cooling by Air
2.4. Geometry and Meshing PV–TEG Hybrid System
2.5. Numerical Approach
2.6. Co-Simulation Procedure of a PV/TEG Hybrid Model with a Single-Phase Inverter
3. Results and Discussion
3.1. Results of Heat Sink TEG Cold Leg
3.2. Solar Cells and TEG Module Results Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
specific heat capacity (kJ/kg·K) | |
T | temperature (K) |
volumetric solar energy absorption (W/m3) | |
electric power generation by volume (W/m3) | |
thermal conductivity (W/m·K) | |
reference cells efficiency | |
temperature of PV cells (K) | |
reference operating temperature (K) | |
coefficient represents amount of efficiency loss per each temperature degree rise in PV cells (K−1) | |
exposed area of PV cells (m2) | |
reflectivity | |
volume of the layer | |
solar radiation intensity (W/m2) | |
QPV-GC | heat transfer between glass cover and photovoltaic cells |
Qgca, Qgcs | heat transfer between glass cover and PV cells, ambient air and surrounding environment |
heat capacity(J/kg·K) | |
h | heat generation rate per unit volume(W/m3) |
Nabla operator | |
heat flux (W/m2) | |
electric current density vector (A/m2) | |
D | electric flux density vector (C/m2) |
E | electric field intensity (V/m) |
TEG electrical resistance (Ω) | |
load resistance (Ω) | |
temperature gradient (K) | |
inlet mass of air (kg/s) | |
effective diameter of the channel (m) | |
h | heat transfer coefficient in air duct (W/m2·K) |
average velocity of the fluid (m/s) | |
Greek letters | |
α | Seebeck coefficient matrix (V/K) |
efficiency | |
λqc | absorption rate of glass cover (W/m·K) |
density (kg/m3) | |
turbulence dissipation rate (m2·s−3) | |
viscosity (Pa·s) | |
liquid phase turbulent viscosity (m2·s) | |
solid phase kinematic eddy viscosity (m2·s−1) | |
σ | surface tension |
turbulent Prandtl number | |
turbulence model constant for the k-equation | |
k-ε turbulence model constants | |
matrix of Peltier coefficient (V) | |
electrical conductivity matrix (S/m) | |
Seebeck coefficient matrix (V/K) | |
electric permittivity matrix (F/m) |
References
- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Li, G.; Zhou, K.; Song, Z.; Zhao, X.; Ji, J. Inconsistent phenomenon of thermoelectric load resistance for photovoltaic–thermoelectric module. Energy Convers. Manag. 2018, 161, 155–161. [Google Scholar] [CrossRef]
- Djaković-Sekulić, T.; Smolinski, A.; Perisić-Janjić, N.; Janicka, M. Chemometric characterization of (chromatographic) lipophilicity parameters of newly synthesized s-triazine derivatives. J. Chemom. 2008, 22, 195–202. [Google Scholar] [CrossRef]
- Smoliński, A.; Howaniec, N.; Gąsior, R.; Polański, J.; Magdziarczyk, M. Hydrogen rich gas production through co-gasification of low rank coal, flotation concentrates and municipal refuse derived fuel. Energy 2021, 235, 121348. [Google Scholar] [CrossRef]
- Flora, A.N.N.; Lee, H.; Wee, D. Technical and economic analysis of thermoelectric modules with macroporous thermoelectric elements. Energy Convers. Manag. 2017, 135, 327–335. [Google Scholar] [CrossRef]
- Smoliński, A.; Stańczyk, K.; Kapusta, K.; Howaniec, N. Chemometric Study of the Ex Situ Underground Coal Gasification Wastewater Experimental Data. Water Air Soil Pollut. 2012, 223, 5745–5758. [Google Scholar] [CrossRef] [Green Version]
- Wojtacha-Rychter, K.; Smoliński, A. The interaction between coal and multi-component gas mixtures in the process of coal heating at various temperatures: An experimental study. Fuel 2018, 213, 150–157. [Google Scholar] [CrossRef]
- Kwan, T.H.; Wu, X. Power and mass optimization of the hybrid solar panel and thermoelectric generators. Appl. Energy 2016, 165, 297–307. [Google Scholar] [CrossRef]
- Krzemień, A.; Więckol-Ryk, A.; Smoliński, A.; Koteras, A.; Więcław-Solny, L. Assessing the risk of corrosion in amine-based CO2 Capture Process. J. Loss Prev. Process Ind. 2016, 43, 189–197. [Google Scholar] [CrossRef]
- Śliwińska, A.; Burchart-Korol, D.; Smoliński. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology. Sci. Total Environ. 2017, 574, 1571–1579. [Google Scholar]
- Smoliński, A.; Dombek, V.; Pertile, E.; Drobek, L.; Gogola, K.; Żechowska, S.W.; Magdziarczyk, M. An analysis of self-ignition of mine waste dumps in terms of environmental protection in industrial areas in Poland. Sci. Rep. 2021, 11, 8851. [Google Scholar] [CrossRef]
- Kwan, T.H.; Wu, X. The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system. Appl. Energy 2017, 204, 873–886. [Google Scholar] [CrossRef]
- Pietruszko, S.M.; Gradzki, M. Performance of a grid connected small PV system in Poland. Appl. Energy 2003, 74, 177–184. [Google Scholar] [CrossRef]
- Amelia, A.R.; Irwan, Y.M.; Leow, W.Z.; Irwanto, M.; Safwati, I.; Zhafarina, M. Investigation of the Effect Temperature on Photovoltaic (PV)Panel Output Performance. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 2088–5334. [Google Scholar]
- Widyolar, B.K.; Abdelhamid, M.; Jiang, L.; Winston, R.; Yablonovitch, E.; Scranton, G. Design simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector. Renew. Energy 2017, 101, 1379–1389. [Google Scholar] [CrossRef] [Green Version]
- Pandey, G.M.; Rahim, N.A.; Tyagi, V.V.; Shahabuddin, S.; Saidur, R. Concentrated photovoltaic thermal systems: A component-by-component view on the developments in the design, heat transfer medium and applications. Energy Convers. Manag. 2019, 186, 15–41. [Google Scholar]
- Wang, C.; Gong, G.; Su, H.; Yu, C.W. Efficacy of integrated photovoltaics–air source heat pump systems for application in Central-south China. Renew. Sustain. Energy Rev. 2015, 49, 1190–1197. [Google Scholar] [CrossRef]
- Cui, T.; Xuan, Y.; Yin, E.; Li, Q.; Li, D. Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials. Energy 2017, 122, 94–102. [Google Scholar] [CrossRef]
- Benghanem, M.; Al-Mashraqi, A.A.; Daffallah, K.O. Performance of solar cells using thermoelectric module in hot sites. Renew. Energy 2016, 89, 51–59. [Google Scholar] [CrossRef]
- Seebeck, M. Magnetic polarization of metals and ores by temperature differences. Abh. Königlichen Akad. Wiss. Berl. 2012, 1822, 265–373. [Google Scholar]
- Zhang, J.; Xuan, Y.M.; Yang, L.L. Performance estimation of photovoltaic—Thermoelectric hybrid systems. Energy 2014, 78, 895–903. [Google Scholar] [CrossRef]
- Contento, G.; Lorenzi, B.; Rizzo, A.; Narducci, D. Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies. Energy 2017, 131, 230–238. [Google Scholar] [CrossRef]
- Van Sark, W.G. Feasibility of photovoltaic—Thermoelectric hybrid modules. Appl. Energy 2011, 88, 2785–2790. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Urbiola, E.A.; Vorobiev, Y.V.; Bulat, L.P. Solar hybrid systems with thermoelectric generators. Sol. Energy 2012, 86, 369–378. [Google Scholar] [CrossRef]
- Zhang, X.; Chau, K.T. Design and implementation of a new thermoelectric—Photovoltaic hybrid energy system for hybrid electric vehicles. Electr. Power Compon. Syst. 2011, 39, 511–525. [Google Scholar] [CrossRef]
- Yang, D.J.; Yin, H.M. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans. Energy Convers. 2011, 26, 662–670. [Google Scholar] [CrossRef]
- Teffah, K.; Zhang, Y.; Mou, X.L. Modeling and Experimentation of New Thermoelectric Cooler-Thermoelectric Generator Module. Energies 2016, 11, 576. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Lu, S.; Liao, B. On the figure of merit of thermoelectric generators. J. Energy Resour. Technol. 2005, 127, 37–41. [Google Scholar] [CrossRef]
- Beeri, O.; Rotem, O.; Hazan, E.; Katz, E.A.; Braun, A.; Gelbstein, Y. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling. J. Appl. Phys. 2015, 118, 115104. [Google Scholar] [CrossRef]
- Evans, D.L. Simplified method for predicting photovoltaic array output. Sol. Energy 1981, 27, 555–560. [Google Scholar] [CrossRef]
- Lamba, R.; Kaushik, S.C. Solar driven concentrated photovoltaic-thermoelectric hybrid system: Numerical analysis and optimization. Energy Convers. Manag. 2018, 170, 34–49. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, W.; Wang, Y.; Shi, Y. Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design. Sol. Energy 2013, 88, 182–191. [Google Scholar] [CrossRef]
- Ong, K.S.; Naghavi, M.S.; Lim, C. Thermal and electrical performance of a hybrid design of a solar-thermoelectric system. Energy Convers. Manag. 2017, 133, 31–40. [Google Scholar] [CrossRef]
- Hashim, H.; Bomphrey, J.J.; Min, G. Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system. Renew. Energy 2016, 87, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Hamidreza, N.; Woodbury, K.A. Modeling and analysis of a combined photovoltaic–thermoelectric power generation system. J. Sol. Energy Eng. 2013, 135, 031013. [Google Scholar]
- Li, G.; Shittu, S.; Diallo, T.M.O.; Yu, M.; Zhao, X.; Ji, J. A review of solar photovoltaic thermoelectric hybrid system for electricity generation. Energy 2018, 158, 41–58. [Google Scholar] [CrossRef]
- Royne, A.; Dey, C.J.; Mills, D.R. Cooling of photovoltaic cells under concentrated illumination: A critical review. Sol. Energy Mater. Sol. Cells 2005, 86, 451–483. [Google Scholar] [CrossRef]
- Singh, P.; Ravindra, N.M. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Kossyvakis, D.N.; Voutsinas, G.D.; Hristoforou, E.V. Experimental analysis and performance evaluation of a tandem photovoltaic-thermoelectric hybrid system. Energy Convers. Manag. 2016, 117, 490–500. [Google Scholar] [CrossRef]
- Wodołażski, A. Numerical analysis of the performance improvement of PV/TEG hybridscooled by passive air flow. Electrotech. Rev. 2021, 97, 20–23. [Google Scholar]
- Wodołazski, A. Numerical analysis of improvement of efficiency of hybrid PV/TE cooled by a passive air radiator. Przem. Chem. 2021, 2. [Google Scholar] [CrossRef]
- Maksymuk, M.; Parashchuk, T.; Dzundza, B.; Nykyruy, L.; Chernyak, L.; Dashevsky, Z. Highly efficient bismuth telluride-based thermoelectric microconverters. J. Mater. Today Energy 2021, 21, 100753. [Google Scholar] [CrossRef]
- SunLink PV. 250 W Maximum Power: High Efficiency Poly-Crystalline Solar Module. Available online: https://sunlinkpv.com/doc/catalogs/SL220-20P.pdf (accessed on 1 July 2021).
Material | Thickness (mm) | Thermal Conductivity (W/m·K) | Specific Heat Capacity (J/kg·K) | Density(kg/m3) |
---|---|---|---|---|
Glass | 3.2 | 5 × 102 | 790 | 2.45 |
EVA (x2) | 0.5 | 2.09 × 103 | 2090 | 0.95 |
PV cells | 0.4 | 1.3 × 102 | 677 | 2.33 |
TPT | 0.3 | 1.5 × 10−1 | 1250 | 1.20 |
Material | Absorptivity | Reflectivity | Transmissivity | Emissivity |
---|---|---|---|---|
Glass | 0.04 | 0.04 | 0.92 | 0.85 |
EVA (x2) | 0.08 | 0.02 | 0.9 | – |
PV cells | 0.9 | 0.08 | 0.02 | – |
Tedlar | 0.14 | 0.86 | 0 | 0.9 |
Parameter | N-Type Semiconductor Leg | P-Type Semiconductor Leg |
---|---|---|
Thermal conductivity(W/m·K) | 1.265 | 1.011 |
Resistivity (Ω m) | 1.314 × 10−5 | 1.119 × 10−5 |
Seebeck coefficient α (V/K) | −1.721 × 10−4 | 2.037 × 10−4 |
Currency (A) | 11.1 | 10.09 |
Material Type | Thermal Conductivity k (W/m·K) | Seebeck Coefficient S (V/K) |
---|---|---|
p-type | 0.0000361558T2 − 0.026351342T + 6.22162 | (0.003638095T2 + 2.74380952T − 296.214286) × 10−6 |
n-type | 0.0000334549T2 − 0.0244586622T + 5.625893 | (0.001530732 − 1.08058874T − 28.3889024) × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wodołażski, A.; Howaniec, N.; Jura, B.; Bąk, A.; Smoliński, A. CFD Numerical Modelling of a PV–TEG Hybrid System Cooled by Air Heat Sink Coupled with a Single-Phase Inverter. Materials 2021, 14, 5800. https://doi.org/10.3390/ma14195800
Wodołażski A, Howaniec N, Jura B, Bąk A, Smoliński A. CFD Numerical Modelling of a PV–TEG Hybrid System Cooled by Air Heat Sink Coupled with a Single-Phase Inverter. Materials. 2021; 14(19):5800. https://doi.org/10.3390/ma14195800
Chicago/Turabian StyleWodołażski, Artur, Natalia Howaniec, Bartłomiej Jura, Andrzej Bąk, and Adam Smoliński. 2021. "CFD Numerical Modelling of a PV–TEG Hybrid System Cooled by Air Heat Sink Coupled with a Single-Phase Inverter" Materials 14, no. 19: 5800. https://doi.org/10.3390/ma14195800
APA StyleWodołażski, A., Howaniec, N., Jura, B., Bąk, A., & Smoliński, A. (2021). CFD Numerical Modelling of a PV–TEG Hybrid System Cooled by Air Heat Sink Coupled with a Single-Phase Inverter. Materials, 14(19), 5800. https://doi.org/10.3390/ma14195800