Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. LoC Device Fabrication
2.2.2. Standard Solution Preparation
2.2.3. MNPs Synthesis
2.3. Physicochemical Characterization
2.3.1. LoC Device Characterization
2.3.2. MNPs Characterization
X-ray Diffraction (XRD)
Infrared (IR) Spectroscopy
SEM. Energy Dispersive X-ray Analysis (EDX)
Transmission Electron Microscopy (TEM). High-Resolution TEM (HR-TEM). Selected Area Electron Diffraction (SAED)
Differential Scanning Calorimetry and Thermogravimetry (DSC-TG)
Dynamic Light Scattering (DLS). Zeta Potential
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. [Google Scholar] [CrossRef]
- Natarajan, S.; Harini, K.; Gajula, G.P.; Sarmento, B.; Neves-Petersen, M.T.; Thiagarajan, V. Multifunctional magnetic iron oxide nanoparticles: Diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mater. 2019, 1, 1–22. [Google Scholar] [CrossRef]
- Rajendrachari, S.; Ceylan, K.B. The activation energy and antibacterial investigation of spherical Fe3O4 nanoparticles prepared by Crocus sativus (Saffron) flowers. Biointerface Res. Appl. Chem. 2020, 10, 5951–5959. [Google Scholar] [CrossRef]
- Samrot, A.V.; Sahithya, C.S.; Sruthi, P.D.; Selvarani, A.J.; Raji, P.; Prakash, P.; Ponnaiah, P.; Petchi, I.; Pattammadath, S.; Purayil, S.K.; et al. Itraconazole Coated Super Paramagnetic Iron Oxide Nanoparticles for Antimicrobial Studies. Biointerface Res. Appl. Chem. 2020, 10, 6262–6269. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Grumezescu, A.M. Magnetite nanoparticles: Synthesis methods—A comparative review. Methods 2021. [Google Scholar] [CrossRef] [PubMed]
- Yew, Y.P.; Shameli, K.; Miyake, M.; Ahmad Khairudin, N.B.B.; Mohamad, S.E.B.; Naiki, T.; Lee, K.X. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem. 2020, 13, 2287–2308. [Google Scholar] [CrossRef]
- de Queiroz, D.F.; de Camargo, E.R.; Martines, M.A.U. Synthesis and characterization of magnetic nanoparticles of cobalt ferrite coated with silica. Biointerface Res. Appl. Chem. 2020, 10, 4908–4913. [Google Scholar] [CrossRef]
- Guler, E.; Demir, B.; Guler, B.; Demirkol, D.O.; Timur, S. BiofuNctionalized nanomaterials for targeting cancer cells. Nanostructures Cancer Ther. 2017, 51–86. [Google Scholar] [CrossRef]
- Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; De Lima, T.M.T.; Delbem, A.C.B.; Monteiro, D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 2018, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Ma, C.; Zhu, M.Q.; Ju, W.N.; Yang, Y.; Wang, X. Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment of Neurodegenerative Diseases with Emphasis on Alzheimer’s Disease. Front. Cell. Neurosci. 2020, 14, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.; Liu, J.; Saha, R.; Peng, C.; Su, D.; Wang, Y.A.; Wang, J.P. Investigation of Commercial Iron Oxide Nanoparticles: Structural and Magnetic Property Characterization. ACS Omega 2021, 6, 6274–6283. [Google Scholar] [CrossRef] [PubMed]
- Mihai, A.D.; Chircov, C.; Grumezescu, A.M.; Holban, A.M. Magnetite nanoparticles and essential oils systems for advanced antibacterial therapies. Int. J. Mol. Sci. 2020, 21, 7355. [Google Scholar] [CrossRef] [PubMed]
- Pantapasis, K.; Anton, G.C.; Bontas, D.A.; Sarghiuta, D.; Grumezescu, A.M.; Holban, A.M. Bioengineered nanomaterials for chemotherapy. In Nanostructures for Cancer Therapy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–49. [Google Scholar] [CrossRef]
- Wei, Y.; Quan, L.; Zhou, C.; Zhan, Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine 2018, 13, 1495–1512. [Google Scholar] [CrossRef] [PubMed]
- Mostarac, D.; Sánchez, P.A.; Kantorovich, S. Characterisation of the magnetic response of nanoscale magnetic filaments in applied fields. Nanoscale 2020, 12, 13933–13948. [Google Scholar] [CrossRef]
- Ejtemaee, P.; Khamehchi, E. Experimental investigation of rheological properties and formation damage of water-based drilling fluids in the presence of Al2O3, Fe3O4, and TiO2 nanoparticles. Biointerface Res. Appl. Chem. 2020, 10, 5886–5894. [Google Scholar] [CrossRef]
- Mohamad, A.; Rizwan, M.; Keasberry, N.A.; Ahmed, M.U. Fabrication of label-free electrochemical food biosensor for the sensitive detection of ovalbumin on nanocomposite-modified graphene electrode. Biointerface Res. Appl. Chem. 2019, 9, 4655–4662. [Google Scholar] [CrossRef]
- Kiliç, G.; Fernández-Bertólez, N.; Costa, C.; Brandão, F.; Teixeira, J.P.; Pásaro, E.; Laffon, B.; Valdiglesias, V. The Application, Neurotoxicity, and Related Mechanism of Iron Oxide Nanoparticles. In Neurotoxicity of Nanomaterials and Nanomedicine; Academic Press: Cambridge, MA, USA, 2017; pp. 127–150. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflore, O.B.; Ger, T.R.; Hsiao, C.D. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef]
- Cotin, G.; Piant, S.; Mertz, D.; Felder-Flesch, D.; Begin-Colin, S. Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization, and Application. In Iron Oxide Nanoparticles for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 43–88. [Google Scholar] [CrossRef]
- Gokduman, K. Comparison of the effect of magnetite (Fe3O4) iron oxide nanoparticles on melanoma cells and healthy cells: An in vitro study. Lett. Appl. NanoBioScience 2020, 9, 1049–1057. [Google Scholar] [CrossRef]
- Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M.; Andronescu, E. Biosensors-on-Chip: An Up-to-Date Review. Molecules 2020, 25, 6013. [Google Scholar] [CrossRef]
- Lin, Y.S.; Yang, C.H.; Wu, C.T.; Grumezescu, A.M.; Wang, C.Y.; Hsieh, W.C.; Chen, S.Y.; Huang, K.S. A microfluidic chip using phenol formaldehyde resin for uniform-sized polycaprolactone and chitosan microparticle generation. Molecules 2013, 18, 6521–6531. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-H.; Wang, C.-Y.; Grumezescu, A.M.; Wang, A.H.-J.; Hsiao, C.-J.; Chen, Z.-Y.; Huang, K.-S. Core-shell structure microcapsules with dual pH-responsive drug release function. Electrophoresis 2014, 35, 2673–2680. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.S.; Yang, C.H.; Kung, C.P.; Grumezescu, A.M.; Ker, M.D.; Lin, Y.S.; Wang, C.Y. Synthesis of uniform core-shell gelatin-alginate microparticles as intestine-released oral delivery drug carrier. Electrophoresis 2014, 35, 330–336. [Google Scholar] [CrossRef]
- Yang, C.-H.; Huang, K.-S.; Grumezescu, A.M.; Wang, C.-Y.; Tzeng, S.-C.; Chen, S.-Y.; Lin, Y.-H.; Lin, Y.-S. Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison. Electrophoresis 2014, 35, 316–322. [Google Scholar] [CrossRef]
- Rao, L.; Cai, B.; Bu, L.-L.; Liao, Q.-Q.; Guo, S.-S.; Zhao, X.-Z.; Dong, W.-F.; Liu, W. Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy. ACS Nano 2017, 11, 3496–3505. [Google Scholar] [CrossRef]
- Khizar, S.; Ben Halima, H.; Ahmad, N.M.; Zine, N.; Errachid, A.; Elaissari, A. Magnetic nanoparticles in microfluidic and sensing: From transport to detection. Electrophoresis 2020, 41, 1206–1224. [Google Scholar] [CrossRef]
- Giouroudi, I.; Keplinger, F. Microfluidic Biosensing Systems Using Magnetic Nanoparticles. Electrophoresis 2013, 14, 18535–18556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermann, C.A.; Mayer, M.; Griesche, C.; Beck, F.; Baeumner, A.J. Microfluidic-enabled magnetic labelling of nanovesicles for bioanalytical applications. Analyst 2021, 146, 997–1003. [Google Scholar] [CrossRef]
- Wicke, W.; Ahmadzadeh, A.; Jamali, V.; Unterweger, H.; Alexiou, C.; Schober, R. Magnetic Nanoparticle-Based Molecular Communication in Microfluidic Environments. IEEE Trans. Nanobiosci. 2019, 18, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yuan, L.; An, J. Crystallographic Characteristics of Hydroxylapatite in Hard Tissues of Cololabis saira. Crystals 2017, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Fu, Z.; Li, J.; Ghosen, J.; Zeng, M.; Stebbins, J.; Prasad, P.N.; Swihart, M.T. Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (Fe3O4) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities. ACS Nano 2017, 11, 6370–6381. [Google Scholar] [CrossRef]
- Rakotomalala Robinson, M.; Abdelmoula, M.; Mallet, M.; Coustel, R. Starch functionalized magnetite nanoparticles: New insight into the structural and magnetic properties. J. Solid State Chem. 2019, 277, 587–593. [Google Scholar] [CrossRef]
- Khalil, M.I. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab. J. Chem. 2015, 8, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Tian, J.; Meng, J.; Zhao, R.; Li, C.; Ma, J.; Jin, T. Modification and Characterization of Fe3O4 Nanoparticles for Use in Adsorption of Alkaloids. Molecules 2018, 23, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iconaru, S.L.; Guégan, R.; Popa, C.L.; Motelica-Heino, M.; Ciobanu, C.S.; Predoi, D. Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl. Clay Sci. 2016, 134, 128–135. [Google Scholar] [CrossRef]
- Čiuladienė, A.; Luckutė, A.; Kiuberis, J.; Kareiva, A. Investigation of the chemical composition of red pigments and binding media. Chemija 2018, 29, 243–256. [Google Scholar] [CrossRef]
- Yu, B.; Lee, R.J.; Lee, L.J. Microfluidic Methods for Production of Liposomes. Methods Enzymol. 2009, 465, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Kašpar, O.; Koyuncu, A.H.; Hubatová-Vacková, A.; Balouch, M.; Tokárová, V. Influence of channel height on mixing efficiency and synthesis of iron oxide nanoparticles using droplet-based microfluidics. RSC Adv. 2020, 10, 15179–15189. [Google Scholar] [CrossRef]
- Bemetz, J.; Wegemann, A.; Saatchi, K.; Haase, A.; Häfeli, U.O.; Niessner, R.; Gleich, B.; Seidel, M. Microfluidic-Based Synthesis of Magnetic Nanoparticles Coupled with Miniaturized NMR for Online Relaxation Studies. Anal. Chem. 2018, 90, 9975–9982. [Google Scholar] [CrossRef]
- Narayanaswamy, V.; Sambasivam, S.; Saj, A.; Alaabed, S.; Issa, B.; Al-Omari, I.A.; Obaidat, I.M. Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths. Molecules 2021, 26, 796. [Google Scholar] [CrossRef]
- Jarzębski, M.; Kościński, M.; Białopiotrowicz, T. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems. J. Phys. Conf. Ser. 2017, 885, 012007. [Google Scholar] [CrossRef]
- Yoon, S.-H. Determination of the Size Distribution of Magnetite Nanoparticles from Magnetic Measurements. J. Magn. 2011, 16, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Vergés, M.A.; Costo, R.; Roca, A.G.; Marco, J.F.; Goya, G.F.; Serna, C.J.; Morales, M.P. Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit. J. Phys. D Appl. Phys. 2008, 41, 134003. [Google Scholar] [CrossRef]
- Mohammed, H.B.; Rayyif, S.M.I.; Curutiu, C.; Birca, A.C.; Oprea, O.-C.; Grumezescu, A.M.; Ditu, L.-M.; Gheorghe, I.; Chifiriuc, M.C.; Mihaescu, G.J.M. Eugenol-Functionalized Magnetite Nanoparticles Modulate Virulence and Persistence in Pseudomonas aeruginosa Clinical Strains. Molecules 2021, 26, 2189. [Google Scholar] [CrossRef]
- Lim, J.; Yeap, S.P.; Che, H.X.; Low, S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tombácz, E.; Illés, E.; Majzik, A.; Jedlovszky-Hajdú, A.; Rideg, N.; Szekeres, M. Ageing in the inorganic nanoworld: Example of magnetite nanoparticles in aqueous medium. Croat. Chem. Acta 2007, 83, 513–515. [Google Scholar]
- Joseph, E.; Singhvi, G. Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In Nanomaterials for Drug Delivery and Therapy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 91–116. [Google Scholar] [CrossRef]
- Darwish, M.S.A.; Nguyen, N.H.A.; Ševců, A.; Stibor, I. Functionalized magnetic nanoparticles and their effect on escherichia coli and staphylococcus aureus. J. Nanomater. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, L.S.; Kovel, E.S.; Kydralieva, K.A.; Dzhardimalieva, G.I.; Illés, E.; Tombácz, E.; Kicheeva, A.G.; Kudryasheva, N.S. Effects of modified magnetite nanoparticles on bacterial cells and enzyme reactions. Nanomaterials 2020, 10, 1499. [Google Scholar] [CrossRef] [PubMed]
Sample Code | C1_20 | C1_40 | C1_60 | C2_20 | C2_40 | C2_60 | C3_20 | C3_40 | C3_60 |
---|---|---|---|---|---|---|---|---|---|
FeSO4·7H2O concentration [%] | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 |
FeCl3 concentration [%] | 0.8 | 0.8 | 0.8 | 0.48 | 0.48 | 0.48 | 0.16 | 0.16 | 0.16 |
Flow [mL/h] | 20 | 40 | 60 | 20 | 40 | 60 | 20 | 40 | 60 |
Sample | C1_20 | C1_40 | C1_60 | C2_20 | C2_40 | C2_60 | C3_40 | C3_60 |
---|---|---|---|---|---|---|---|---|
Average crystallite size [Å] | 26.21 | 20.96 | 20.99 | 22.98 | 30.01 | 36.17 | 14.52 | 16.70 |
Standard deviation | 3.45 | 1.65 | 1.41 | 2.80 | 3.63 | 5.82 | 0.58 | 0.56 |
Crystallinity [%] | 12.11 | 10.58 | 9.99 | 9.81 | 5.30 | 6.39 | 5.27 | 9.05 |
Sample | Hydrodynamic Diameter [nm] | % Mass |
---|---|---|
C1_20 | 26.7 | 0.0 |
811.6 | 2.2 | |
4403.1 | 97.8 | |
C1_40 | 126.3 | 0.2 |
631.3 | 3 | |
4492.3 | 96.8 | |
C1_60 | 68.7 | 0.4 |
765.3 | 33.3 | |
4772.7 | 66.3 | |
C2_20 | 100.2 | 0.2 |
2966.2 | 99.8 | |
C2_40 | 244.4 | 0.2 |
3322.9 | 99.8 | |
C2_60 | 143.7 | 1.3 |
4628.8 | 98.7 | |
C3_20 | 94.6 | 0.8 |
918.1 | 99.2 | |
C3_40 | 91.5 | 0.2 |
2051.2 | 99.8 | |
C3_60 | 130.4 | 2.1 |
760.8 | 13.6 | |
4459.4 | 84.3 |
Sample | C1_20 | C1_40 | C1_60 | C2_20 | C2_40 | C2_60 | C3_20 | C3_40 | C3_60 |
---|---|---|---|---|---|---|---|---|---|
Zeta potential [mV] | −7.77 | −12.78 | −4.87 | −6.62 | −10.41 | −9.39 | −69.51 | −72.54 | −39.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M.; Vasile, B.S.; Oprea, O.; Nicoară, A.I.; Yang, C.-H.; Huang, K.-S.; Andronescu, E. Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device. Materials 2021, 14, 5906. https://doi.org/10.3390/ma14195906
Chircov C, Bîrcă AC, Grumezescu AM, Vasile BS, Oprea O, Nicoară AI, Yang C-H, Huang K-S, Andronescu E. Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device. Materials. 2021; 14(19):5906. https://doi.org/10.3390/ma14195906
Chicago/Turabian StyleChircov, Cristina, Alexandra Cătălina Bîrcă, Alexandru Mihai Grumezescu, Bogdan Stefan Vasile, Ovidiu Oprea, Adrian Ionuț Nicoară, Chih-Hui Yang, Keng-Shiang Huang, and Ecaterina Andronescu. 2021. "Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device" Materials 14, no. 19: 5906. https://doi.org/10.3390/ma14195906
APA StyleChircov, C., Bîrcă, A. C., Grumezescu, A. M., Vasile, B. S., Oprea, O., Nicoară, A. I., Yang, C. -H., Huang, K. -S., & Andronescu, E. (2021). Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device. Materials, 14(19), 5906. https://doi.org/10.3390/ma14195906