Batch Reactor vs. Microreactor System for Efficient AuNP Deposition on Activated Carbon Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.1.1. Precursor of Gold Nanoparticles
2.1.2. Reductant and Electrostatic Stabilizer
2.1.3. Polymer
2.1.4. Carbon Fibers as “a Trap” for Metal
2.2. Synthesis and Deposition of Gold Nanoparticles
2.2.1. Synthesis in the Batch Reactor
2.2.2. Synthesis in the Microreactor System
2.3. Analysis Methods
2.3.1. Spectra Analysis
2.3.2. Dynamic Light Scattering (DLS) Analysis
2.3.3. Scanning Electron Microscopy (SEM) Analysis
2.3.4. Fourier—Transform Infrared Spectroscopy
3. Results
3.1. Experimental Conditions
3.1.1. Au(III) Ion Adsorption, Gold Nanoparticle Synthesis, and Deposition on Carbon/Activated Carbon Fibers Carried out in a Batch Reactor
3.1.2. Gold Nanoparticles Synthesis and Deposition Carried out in a Microreactor System
3.2. CF and ACF Characterization
3.3. Process of Colloidal Gold Synthesis and Its Deposition on Carbon Fibers Carried out in the Batch Reactor
3.3.1. Organoleptic Observation and Spectrophotometric Analysis of Colloidal Gold
3.3.2. SEM Analysis
3.4. Process of Colloidal Gold Synthesis and Their Deposition on Activated Carbon Fibers Carried out in the Batch Reactor
3.4.1. Organoleptic Observation and Spectral Analysis of Colloidal Gold
3.4.2. SEM Analysis
3.5. Process of Colloidal Gold Synthesis and Their Deposition on Activated Carbon Fibers Carried out in the Microreactor System
3.5.1. Organoleptic Observation and Spectra Analysis of Colloidal Gold Synthesized in Microreactor System
3.5.2. DLS Analysis of Colloidal Gold Synthesized in the Microreactor
3.5.3. SEM Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Kasi Viswanath, I.V.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L.N. Review on nanomaterials: Synthesis and applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Wojnicki, M.; Tokarski, T.; Hessel, V.; Fitzner, K.; Luty-Błocho, M. 2H and 4H silver colloidal suspension synthesis, as a new potential drug carrier. Chem. Eng. J. 2020, 382, 122922. [Google Scholar] [CrossRef]
- Mostafa, S.; Behafarid, F.; Croy, J.R.; Ono, L.K.; Li, L.; Yang, J.C.; Frenkel, A.I.; Cuenya, B.R. Shape-Dependent Catalytic Properties of Pt Nanoparticles. J. Am. Chem. Soc. 2010, 132, 15714–15719. [Google Scholar] [CrossRef] [PubMed]
- Gavia, D.J.; Shon, Y.-S. Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands. ChemCatChem 2015, 7, 892–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W. Introduction: Nanoparticles in Medicine. Chem. Rev. 2015, 115, 10407–10409. [Google Scholar] [CrossRef] [Green Version]
- Jun, L.Y.; Khan, F.S.A.; Mubarak, N.M.; Yon, L.S.; Bing, C.H.; Khalid, M.; Abdullah, E.C. Importance of Nanomaterials in Engineering Application. In Contemporary Nanomaterials in Material Engineering Applications; Mubarak, N.M., Khalid, M., Walvekar, R., Numan, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285. [Google Scholar] [CrossRef] [Green Version]
- Astruc, D. Introduction: Nanoparticles in Catalysis. Chem. Rev. 2020, 120, 461–463. [Google Scholar] [CrossRef] [Green Version]
- Denicourt-Nowicki, A.; Roucoux, A.; Bönnemann, H.; Khelashvili, G.; Hormes, J.; Kühn, T.-J.; Richter, W.-J.; Favier, I.; Madec, D.; Gómez, M. Metallic Nanoparticles in Neat Water for Catalytic Applications Nanostructured Metal Particles for Catalysts and Energy-Related Materials Metallic Nanoparticles in Ionic Liquids—Applications in Catalysis. Nanomater. Catal. 2012, 55–95. [Google Scholar] [CrossRef]
- Marchesan, S.; Prato, M. Nanomaterials for (Nano)medicine. ACS Med. Chem. Lett. 2013, 4, 147–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, A.; López, I. Current Status and Perspectives in Nanowaste Management. In Handbook of Environmental Materials Management; Hussain, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 2287–2314. [Google Scholar]
- Holder, A.L.; Vejerano, E.P.; Zhou, X.; Marr, L.C. Nanomaterial disposal by incineration. Environ. Sci. Process. Impacts 2013, 15, 1652–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poynton, H.C.; Robinson, W.E. Chapter 3.7—Contaminants of Emerging Concern, With an Emphasis on Nanomaterials and Pharmaceuticals. In Green Chemistry; Török, B., Dransfield, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 291–315. [Google Scholar]
- Faunce, T.; Kolodziejczyk, B. Nanowaste: Need for Disposal and Recycling Standard. G20 Insights 2017. [Google Scholar]
- Krishnamurthy, S.; Yun, Y.-S. Recovery of microbially synthesized gold nanoparticles using sodium citrate and detergents. Chem. Eng. J. 2013, 214, 253–261. [Google Scholar] [CrossRef]
- Morita-Imura, C.; Imura, Y.; Kawai, T.; Shindo, H. Recovery and redispersion of gold nanoparticles using the self-assembly of a pH sensitive zwitterionic amphiphile. Chem. Commun. 2014, 50, 12933–12936. [Google Scholar] [CrossRef] [PubMed]
- Lazim, A.M.; Eastoe, J.; Bradley, M.; Trickett, K.; Mohamed, A.; Rogers, S.E. Recovery of gold nanoparticles using pH-sensitive microgels. Soft Matter 2010, 6, 2050–2055. [Google Scholar] [CrossRef]
- Ippolito, N.M.; Medici, F.; Pietrelli, L.; Piga, L. Effect of Acid Leaching Pre-Treatment on Gold Extraction from Printed Circuit Boards of Spent Mobile Phones. Materials 2021, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Hakke, V.; Sonawane, S.; Anandan, S.; Sonawane, S.; Ashokkumar, M. Process Intensification Approach Using Microreactors for Synthesizing Nanomaterials—A Critical Review. Nanomaterials 2021, 11, 98. [Google Scholar] [CrossRef]
- Hessel, V.; Cortese, B.; de Croon, M.H.J.M. Novel process windows—Concept, proposition and evaluation methodology, and intensified superheated processing. Chem. Eng. Sci. 2011, 66, 1426–1448. [Google Scholar] [CrossRef]
- Pacławski, K.; Streszewski, B.; Jaworski, W.; Luty-Błocho, M.; Fitzner, K. Gold nanoparticles formation via gold(III) chloride complex ions reduction with glucose in the batch and in the flow microreactor systems. Colloids Surf. A Physicochem. Eng. Asp. 2012, 413, 208–215. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Grzonka, J.; Kurzydłowski, K.J. The synthesis of stable platinum nanoparticles in the microreactor. Arch. Metall. Mater. 2014, 59, 509–512. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M. Single-step synthesis of onion-like Au-Pd-PtNPs nanoparticles using microflow system. J. Flow Chem. 2015, 5, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Wojnicki, M.; Luty-Blocho, M.; Hessel, V.; Csapó, E.; Ungor, D.; Fitzner, K. Micro droplet formation towards continuous nanoparticles synthesis. Micromachines 2018, 9, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, S.; Peng, P.; Wei, Y.; Xu, L.; Guo, S.; Zhang, L.; Zhang, L.; Dai, L. Solvent extraction of In3+ with microreactor from leachant containing Fe2+ and Zn2+. Green Process. Synth. 2014, 3, 63–68. [Google Scholar] [CrossRef]
- Zhang, L.; Hessel, V.; Peng, J. Liquid-liquid extraction for the separation of Co(II) from Ni(II) with Cyanex 272 using a pilot scale Re-entrance flow microreactor. Chem. Eng. J. 2018, 332, 131–139. [Google Scholar] [CrossRef]
- Pamme, N.; Manz, A. On-Chip Free-Flow Magnetophoresis: Continuous Flow Separation of Magnetic Particles and Agglomerates. Anal. Chem. 2004, 76, 7250–7256. [Google Scholar] [CrossRef]
- Wojnicki, M.; Rudnik, E.; Luty-Błocho, M.; Pacławski, K.; Fitzner, K. Kinetic studies of gold(III) chloride complex reduction and solid phase precipitation in acidic aqueous system using dimethylamine borane as reducing agent. Hydrometallurgy 2012, 127–128, 43–53. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Włoch, G.; Fitzner, K. Green method for efficient PdNPs deposition on carbon carrier in the microreactor system. J. Nanoparticle Res. 2018, 20, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luty-Błocho, M.; Wojnicki, M.; Fitzner, K. Gold Nanoparticles Formation via Au(III) Complex Ions Reduction with l-Ascorbic Acid. Int. J. Chem. Kinet. 2017, 49, 789–797. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Pacławski, K.; Wojnicki, M.; Fitzner, K. The kinetics of redox reaction of gold(III) chloride complex ions with l-ascorbic acid. Inorg. Chim. Acta 2013, 395, 189–196. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Grzonka, J.; Kurzydłowski, K.J.; Fitzner, K. Linking the Gold Nanoparticles Formation Kinetics with Their Morphology. Int. J. Chem. Kinet. 2018, 50, 204–214. [Google Scholar] [CrossRef]
- Kim, H.I.; Han, W.; Choi, W.K.; Park, S.-J.; An, K.H.; Kim, B.-J. Effects of maleic anhydride content on mechanical properties of carbon fibers-reinforced maleic anhydride-grafted-poly-propylene matrix composites. Carbon Lett. 2016, 20, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhao, J.; Zhu, M.; Yu, J.; Hu, Y.-S.; Liu, H. Selective adsorption–deposition of gold nanoparticles onto monodispersed hydrothermal carbon spherules: A reduction–deposition coupled mechanism. J. Mater. Chem. A 2015, 3, 1666–1674. [Google Scholar] [CrossRef]
- Mena, K.; Kose, Y.; Amano, Y.; Machida, M.; Imazeki, F. Influence of Oxidation Conditions of Activated Carbon on Adsorption of Pb(II) from Aqueous Solution. J. Environ. Chem. 2016, 26, 109–114. [Google Scholar] [CrossRef]
- Severini, F.; Formaro, L.; Pegoraro, M.; Posca, L. Chemical modification of carbon fiber surfaces. Carbon 2002, 40, 735–741. [Google Scholar] [CrossRef]
- Bismarck, A.; Wuertz, C.; Springer, J. Basic surface oxides on carbon fibers. Carbon 1999, 37, 1019–1027. [Google Scholar] [CrossRef]
- Wojnicki, M.; Luty-Błocho, M.; Socha, R.P.; Mech, K.; Pędzich, Z.; Fitzner, K.; Rudnik, E. Kinetic studies of sorption and reduction of gold(III) chloride complex ions on activated carbon Norit ROX 0.8. J. Ind. Eng. Chem. 2015, 29, 289–297. [Google Scholar] [CrossRef]
- Sun, T.M.; Yen, W.T. Kinetics of gold chloride adsorption onto activated carbon. Miner. Eng. 1993, 6, 17–29. [Google Scholar] [CrossRef]
- Wojnicki, M.; Luty-Błocho, M.; Socha, R.P.; Pędzich, Z.; Małecki, S.; Kula, A.; Żabiński, P. The kinetic studies of gold(III) chloride complex adsorption mechanism from an aqueous and semi-aqueous system. J. Mol. Liq. 2019, 278, 43–52. [Google Scholar] [CrossRef]
- Wojnicki, M.; Rudnik, E.; Luty-Błocho, M.; Socha, R.; Pędzich, Z.; Fitzner, K.; Mech, K. Kinetic Studies of Gold Recovery from Diluted Chloride Aqueous Solutions Using Activated Carbon Organosorb 10 CO. Aust. J. Chem. 2016, 69, 254–261. [Google Scholar] [CrossRef]
Notation | Carbon Fibers | Type of Stabilization |
---|---|---|
S1 | Carbon fibers without further modification | none 1a |
S2 | none 1b | |
S3 | electrostatic 2 | |
S4 | electrosteric 2 | |
S5 | electrostatic 3 | |
S6 | electrosteric 3 | |
AS1 | Activated carbon fibers | none 1a |
AS2 | none 1b | |
AS3 | electrostatic 2 | |
AS4 | electrosteric 2 | |
AS5 | electrostatic 3 | |
AS6 | electrosteric 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luty-Błocho, M.; Wojnicki, M.; Tokarski, T.; Hessel, V.; Fitzner, K. Batch Reactor vs. Microreactor System for Efficient AuNP Deposition on Activated Carbon Fibers. Materials 2021, 14, 6598. https://doi.org/10.3390/ma14216598
Luty-Błocho M, Wojnicki M, Tokarski T, Hessel V, Fitzner K. Batch Reactor vs. Microreactor System for Efficient AuNP Deposition on Activated Carbon Fibers. Materials. 2021; 14(21):6598. https://doi.org/10.3390/ma14216598
Chicago/Turabian StyleLuty-Błocho, Magdalena, Marek Wojnicki, Tomasz Tokarski, Volker Hessel, and Krzysztof Fitzner. 2021. "Batch Reactor vs. Microreactor System for Efficient AuNP Deposition on Activated Carbon Fibers" Materials 14, no. 21: 6598. https://doi.org/10.3390/ma14216598
APA StyleLuty-Błocho, M., Wojnicki, M., Tokarski, T., Hessel, V., & Fitzner, K. (2021). Batch Reactor vs. Microreactor System for Efficient AuNP Deposition on Activated Carbon Fibers. Materials, 14(21), 6598. https://doi.org/10.3390/ma14216598