CuZn and ZnO Nanoflowers as Nano-Fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, Translocation, and Impact after Foliar Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solvothermal Synthesis of Bimetallic CuZn and Metal Oxide ZnO NFs
2.2. Characterization
2.3. Ionic Release Measurements
2.4. Antifungal Bioassays
2.4.1. Strains and Cultural Practice
In Vitro Antifungal Activity
Plant Material and Growth Conditions
In Planta Experiments
2.5. Measurement of Photosynthetic Parameters
2.6. Florescence Detection of NFs in Treated Lettuce Plants
2.7. Statistical Analysis
3. Results and Discussion
3.1. Synthetic Aspects and Characterization
3.2. In Vitro Antifungal Activity
3.3. In Planta Experiments
3.3.1. Disease Severity
3.3.2. Photosynthetic Characteristics
3.3.3. Uptake and Translocation of NFs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Anet | Net photosynthetic rate |
B. cinerea | Botrytis cinerea |
CCI | Chlorophyll content index |
DEG | Diethylene glycol |
DI water | Distilled Water |
DLS | Dynamic Light Scattering |
EC50 | Values: Half maximal effective concentration causing 50% inhibition of mycelial growth |
EDX | Energy Dispersive X-ray Analysis |
FT-IR | Fourier transform infrared spectroscopy |
FWHM | Full width at half-maximum |
IC50 | Half-maximal inhibitory concentration |
ICP | Ionic Release Analysis |
INPs | Inorganic nanoparticles |
NFs | Nanoflowers |
NPs | Nanoparticles |
PDA | Potato dextrose agar |
PEG 8000 | Polyethylene glycol 8000 |
QY | Quantum yield |
ROS | Reactive oxygen species |
S. sclerotiorum | Sclerotinia sclerotiorum |
SEM | Scanning electron microscope |
TEM | Transmission electron microscopy |
TGA | Thermogravimetric analysis |
XRD | X-ray diffraction |
ZnO NPs | Zinc oxide nanoparticles |
USEPA | United States Environmental Protection Agency. Copper facts. |
References
- Dhiman, S.; Varma, A.; Goel, A. Biofabricated nanoscale ZnO and their prospective in disease suppression and crop growth of Brassica species: A review. Biocatal. Agric. Biotechnol. 2021, 37, 102171. [Google Scholar] [CrossRef]
- Dean, R.; van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology: Top 10 Fungal pathogens. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Company, P.; González-Bosch, C. Identification of a copper chaperone from tomato fruits infected with Botrytis cinerea by differential display. Biochem. Biophys. Res. Commun. 2003, 304, 825–830. [Google Scholar] [CrossRef]
- Young, C.S.; Clarkson, J.P.; Smith, J.A.; Watling, M.; Phelps, K.; Whipps, J.M. Environmental conditions influencing Sclerotinia sclerotiorum infection and disease development in lettuce. Plant Pathol. 2004, 53, 387–397. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Santiago, E.F.; Pontes, M.S.; Arruda, G.J.; Caires, A.R.L.; Colbeck, I.; Maldonado-Rodriguez, R.; Grillo, R. Understanding the Interaction of Nanopesticides with Plants. In Nanopesticides; Fraceto, L.F., de Castro, V.L.S.S., Grillo, R., Ávila, D., Oliveira, H.C., Lima, R., Eds.; Springer: Cham, Switzerland, 2020; pp. 69–109. [Google Scholar]
- Giannousi, K.; Avramidis, I.; Dendrinou-Samara, C. Synthesis, Characterization and Evaluation of Copper Based Nanoparticles as Agrochemicals against Phytophthora infestans. RSC Adv. 2013, 3, 21743. [Google Scholar] [CrossRef]
- Antonoglou, O.; Moustaka, J.; Adamakis, S.I.-D.; Sperdouli, I.; Pantazaki, A.A.; Moustakas, M.; Dendrinou-Samara, C. Nano-brass CuZn Nanoparticles as Foliar Spray Nonphytotoxic Fungicides. ACS Appl. Mater. Interf. 2018, 10, 4450–4461. [Google Scholar] [CrossRef]
- Sperdouli, I.; Moustaka, J.; Antonoglou, O.; Adamakis, I.-D.S.; Dendrinou-Samara, C.; Moustakas, M. Leaf Age-Dependent Effects of Foliar-Sprayed CuZn Nanoparticles on Photosynthetic Efficiency and ROS Generation in Arabidopsis thaliana. Material 2019, 12, 2498. [Google Scholar] [CrossRef] [Green Version]
- Tryfon, P.; Antonoglou, O.; Vourlias, G.; Mourdikoudis, S.; Menkissoglu-Spiroudi, U.; Dendrinou-Samara, C. Tailoring Ca-Based Nanoparticles by Polyol Process for Use as Nematicidals and pH Adjusters in Agriculture. ACS Appl. Nano Mater. 2019, 2, 3870–3881. [Google Scholar] [CrossRef]
- Oluwatoyin, A.F.; Ridwan, O.A.; Rizwan, A.A. Nanoparticles’ Synthesis and Their Application in the Management of Phytonematodes: An Overview. In Management of Phytonematodes: Recent Advances and Future Challenges; Springer: Singapore, 2020; pp. 125–140. [Google Scholar]
- Iavicoli, I.; Leso, V.; Beezhold, D.; Shvedova, A.A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 2017, 329, 96–111. [Google Scholar] [CrossRef]
- Dimkpa, O.C.; Andrews, J.; Fugice, J.; Singh, U.; Bindraban, S.P.; Elmer, H.W.; Gardea-Torresdey, L.J.; White, C.J. Facile Coating of Urea with Low-Dose ZnO Nanoparticles Promotes Wheat Performance and Enhances Zn Uptake Under Drought Stress. Front. Plant Sci. 2020, 11, 168. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.A.; Abu-Elghait, M.; Ahmed, N.E.; Salem, S.S. Eco-friendly Mycogenic Synthesis of ZnO and CuO Nanoparticles for in Vitro Antibacterial, Antibiofilm, and Antifungal Applications. Biol. Trace Elem. Res. 2021, 199, 2788–2799. [Google Scholar] [CrossRef]
- Abomuti, M.A.; Danish, E.Y.; Firoz, A.; Hasan, N.; Malik, M.A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. Biology 2021, 10, 1075. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Sudhir Shende, S.; Gupta, I.; Biswas, J.K.; da Silva, S.S. Copper and Copper Nanoparticles: Role in Management of Insect-pests and Pathogenic Microbes. Nanotechnol. Rev. 2018, 7, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration (FDA). Select Committee on GRAS Substances Opinion: Zinc Salts. USA. Available online: https://www.fda.gov/food/food-ingredients-packaging/food-ingredient-packaging-terms (accessed on 20 October 2021).
- Barman, A. Review on Biocompatibility of ZnO Nano Particles. Resist. Train. Methods 2015, 343–352. [Google Scholar] [CrossRef]
- Ali, A.; Phull, A.-R.; Zia, M. Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol. Rev. 2018, 7, 413–441. [Google Scholar] [CrossRef]
- Erazo, A.; Mosquera, S.A.; Rodríguez-Paéz, J. Synthesis of ZnO nanoparticles with different morphology: Study of their antifungal effect on strains of Aspergillus niger and Botrytis cinerea. Mater. Chem. Phys. 2019, 234, 172–184. [Google Scholar] [CrossRef]
- Sardella, D.; Gatt, R.; Valdramidis, V.P. Assessing the efficacy of zinc oxide nanoparticles against Penicillium expansum by automated turbidimetric analysis. Mycology 2018, 9, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Jamdagni, P.; Rana, S.J.; Khatri, P.; Nehra, K. Comparative Account of Antifungal Activity of Green and Chemically Synthe-sized Zinc Oxide Nanoparticles in Combination with Agricultural Fungicides. Int. J. Nano Dimens. 2018, 9, 198–208. [Google Scholar]
- Kairyte, K.; Kadys, A.; Luksiene, Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J. Photochem. Photobiol. B Biol. 2013, 128, 78–84. [Google Scholar] [CrossRef]
- Banik, S.; Luque, A.P. In vitro Effects of Copper Nanoparticles on Plant Pathogens, Beneficial Microbes and Crop Plants. Span. J. Agricult. Res. 2017, 15, e1005. [Google Scholar] [CrossRef] [Green Version]
- Shende, P.; Kasture, P.; Gaud, R. Nanoflowers: The future trend of nanotechnology for multi-applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Fernandes, G.D.R.; Franco, O.L. Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Front. Microbiol. 2014, 5, 489. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, A.; Jackson, K.; Morgan, C.; Anderson, A.J.; Britt, D.W. A Review of Metal and Metal-Oxide Nanoparticle Coating Technologies to Inhibit Agglomeration and Increase Bioactivity for Agricultural Applications. Agronomy 2020, 10, 1018. [Google Scholar] [CrossRef]
- Antonoglou, O.; Founta, E.; Karagkounis, V.; Pavlidou, E.; Litsardakis, G.; Mourdikoudis, S.; Thanh, N.T.K.; Dendrinou-Samara, C. Structure Differentiation of Hydrophilic Brass Nanoparticles Using a Polyol Toolbox. Front. Chem. 2019, 7, 817. [Google Scholar] [CrossRef]
- Giannousi, K.; Geromichalos, G.D.; Kakolyri, D.; Mourdikoudis, S.; Dendrinou-Samara, C. Interaction of ZnO Nanostructures with Proteins: In Vitro Fibrillation/Antifibrillation Studies and in Silico Molecular Docking Simulations. ACS Chem. Neurosci. 2020, 11, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Coventry, E.; Handy, C.; West, S.J.; Young, S.C.; Clarkson, P.J. Inoculum Potential of Sclerotinia sclerotiorum sclerotia Depends on Isolate and Host Plant. Plant Pathol. 2018, 67, 1286–1295. [Google Scholar] [CrossRef] [Green Version]
- Huzar-Novakowiski, J.; Dorrance, A.E. Ascospore Inoculum Density and Characterization of Components of Partial Resistance to Sclerotinia sclerotiorum in Soybean. Plant Dis. 2018, 102, 1326–1333. [Google Scholar] [CrossRef] [Green Version]
- Gkanatsiou, C.; Karamanoli, Κ.; Menkissoglu-Spiroudi, U.; Dendrinou-Samara, C. Composition Effect of Cu-based Nano-particles on Phytopathogenic Bacteria. Antibacterial Studies and Phytotoxicity Evaluation. Polyhedron 2019, 170, 395–403. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Zheng, J.; Wang, Y.; Hu, T.; Meng, C. Metal oxide decorated layered silicate magadiite for enhanced properties: Insight from ZnO and CuO decoration. Dalton Trans. 2017, 46, 4303–4316. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, O.C.; Bindraban, S.P. Nanofertilizers: New Products for the Industry? J. Agric. Food Chem. 2018, 66, 6462–6473. [Google Scholar] [CrossRef]
- Antonoglou, O.; Giannousi, K.; Arvanitidis, J.; Mourdikoudis, S.; Pantazaki, A.; Dendrinou-Samara, C. Elucidation of one step synthesis of PEGylated CuFe bimetallic nanoparticles. Antimicrobial activity of CuFe@PEG vs Cu@PEG. J. Inorg. Biochem. 2017, 177, 159–170. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Louis, C.; Delannoy, L. Novel Non-noble Bimetallic Cu-Zn/TiO2 Catalysts for Selective Hydrogenation of Butadiene. J. Catal. 2017, 347, 185–196. [Google Scholar] [CrossRef]
- Ahammed, R.K.; Ashaduzzaman, M.; Paul, C.S.; Nath, R.M.; Bhowmik, S.; Saha, O.; Rahaman, M.M.; Bhowmik, S.; Aka, T.D. Microwave Assisted Synthesis of Zinc Oxide (ZnO) Nanoparticles in a Noble Approach: Utilization for Antibacterial and Photocatalytic Activity. SN Appl. Sci. 2020, 2, 955. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Raghavendra, M.G.; Varaprasad, K.; Reddy, S.V.G.; Reddy, B.A.; Sudhakar, K.; Sadiku, R.E. Preparation and Characterization of Poly(ethylene glycol) Stabilized Nano Silver Particles by a Mechanochemical Assisted Ball Mill Process. J. Appl. Polym. Sci. 2016, 133, 43027. [Google Scholar] [CrossRef]
- Anusiya, A.; Jansi, B.; Ravi, G.; Yuvakkumar, R. Synthesis and Characterization of ZnO Nanoflowers. In Proceedings of the International Conference on Momentous Role of Nanomaterials in Renewable Energy Devices, Karaikudi, India, 7 April 2018. [Google Scholar]
- Qu, Y.; Huang, R.; Qi, W.; Shi, M.; Su, R.; He, Z. Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity. Catal. Today 2020, 355, 397–407. [Google Scholar] [CrossRef]
- Katiyar, A.; Kumar, N.; Shukla, R.K.; Srivastava, A. Substrate Free Ultrasonic-assisted Hydrothermal Growth of ZnO Nanofowers at Low Temperature. SN Appl. Sci. 2020, 2, 1386. [Google Scholar] [CrossRef]
- Abdulgafour, H.; Hassan, Z.; Al-Hardan, N.; Yam, F. Growth of zinc oxide nanoflowers by thermal evaporation method. Phys. B Condens. Matter 2010, 405, 2570–2572. [Google Scholar] [CrossRef]
- Nagaraju, G.; Udayabhanu, S.; Prashanth, S.A.; Shastri, M.; Yathisha, K.V.; Anupama, C.; Rangappa, D. Electro-chemical Heavy Metal detection, Photocatalytic, Photoluminescence, Biodiesel Production and Antibacterial Activities of Ag–ZnO Nanomaterial. Mater. Res. Bull. 2017, 94, 54–63. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ. Sci. Technol. 2008, 42, 5580–5585. [Google Scholar] [CrossRef]
- Dong, L.; Li, R.; Wang, L.; Lan, X.; Sun, H.; Zhao, Y.; Wang, L. Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose. Int. J. Biol. Macromol. 2021, 172, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Monika Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO Na-noparticles to Selected Environmentally Relevant Test Organisms and Mammalian Cells in vitro: A Critical Review. Arch Toxicol. 2013, 87, 1181–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malandrakis, A.A.; Kavroulakis, N.; Chrysikopoulos, C. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total. Environ. 2019, 670, 292–299. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar] [CrossRef]
- Pariona, N.; Mtz-Enriquez, A.I.; Sánchez-Rangel, D.; Carrión, G.; Paraguay-Delgado, F.; Rosas-Saito, G. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 2019, 9, 18835–18843. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Fu, Y.; Guoqing, L.; Ghabrial, S.A. Viruses of the Plant Pathogenic Fungus Sclerotinia sclerotiorum. Adv. Appl. Microbiol. 2013, 86, 215–248. [Google Scholar] [CrossRef]
- Abdel-Halim, K.Y.; El-Ghanam, A.A. Antifungal Potent of Some Metallic Nanoparticles against Sclerotinia sclerotiorum on Common Bean Plants: An Emphasis for Biochemical Alterations and Metal Accumulation. Acad. J. Life Sci. 2019, 5, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Consolo, V.F.; Torres-Nicolini, A.; Alvarez, V.A. Mycosinthetized Ag, CuO and ZnO Nanoparticles from a Promising Trichoderma harzianum Strain and their Antifungal Potential Against Important Phytopathogens. Sci. Rep. 2020, 10, 20499. [Google Scholar] [CrossRef]
- Delgado, K.; Quijada, R.; Palma, R.; Palza, H. Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett. Appl. Microbiol. 2011, 53, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Palza, H. Antimicrobial Polymers with Metal Nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [Google Scholar] [CrossRef] [Green Version]
- Al-Tememe, M.A.Z.; Abdalmoohsin, G.R.; Mohammadalli, T.M.; Al Mosawy, M.M.; Al-Masoudi, M.Z. Molecular Diagnosis of the Fungus Sclerotinia sclerotiorum: A Causal Agent of White Rot Disease in Solanum melongena L. and its Control using zinc oxide Nanoparticles. Biopestic. Int. 2019, 15, 51–56. [Google Scholar]
- Alghuthaymi, M.A.; Kalia, A.; Bhardwaj, K.; Bhardwaj, P.; Abd-Elsalam, K.A.; Valis, M.; Kuca, K. Nanohybrid Antifungals for Control of Plant Diseases: Current Status and Future Perspectives. J. Fungi 2021, 7, 48. [Google Scholar] [CrossRef]
- Lipovsky, A.; Nitzan, Y.; Gedanken, A.; Lubart, R. Antifungal activity of ZnO nanoparticles—The role of ROS mediated cell injury. Nanotechnology 2011, 22, 105101. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Le, T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. J. Agric. Food Chem. 2018, 66, 11209–11220. [Google Scholar] [CrossRef]
- Faizan, M.; Faraz, A.; Yusuf, M.; Khan, S.T.; Hayat, S. Zinc Oxide Nanoparticle-mediated Changes in Photosynthetic Efficiency and Antioxidant System of Tomato Plants. Photosynthetica 2018, 56, 678–686. [Google Scholar] [CrossRef]
- Adrees, M.; Khan, Z.S.; Hafeez, M.; Rizwan, M.; Khalid Hussain, K.; Asrar, M.; Alyemeni, M.N.; Wijaya, L.; Ali, S. Foliar Ex-posure of Zinc Oxide Nanoparticles Improved the Growth of Wheat (Triticum aestivum L.) and Decreased Cadmium Concen-tration in Grains Under Simultaneous Cd and Water Deficient Stress. Ecotox. Environ. Saf. 2021, 208, 111627. [Google Scholar] [CrossRef]
- Rico, C.M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Chemistry, Biochemistry of Nanoparticles, and their Role in Antioxidant Defense System in Plants. In Nanotechnology and Plant Sciences; Springer: Cham, Switzerland, 2015; pp. 1–17. [Google Scholar]
- Rossi, L.; Fedenia, L.N.; Sharifan, H.; Ma, X.; Lombardini, L. Effects of Foliar Application of Zinc Sulfate and Zinc Nanopar-ticles in Coffee (Coffea arabica L.) Plants. Plant Physiol. Biochem. 2019, 135, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Luksiene, Z.; Rasiukeviciute, N.; Zudyte, B.; Uselis, N. Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. J. Photochem. Photobiol. B Biol. 2020, 203, 111656. [Google Scholar] [CrossRef]
- Petit, A.-N.; Fontaine, F.; Vatsa, P.; Clément, C.; Vaillant-Gaveau, N. Fungicide impacts on photosynthesis in crop plants. Photosynth. Res. 2012, 111, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Larue, C.; Castillo-Michel, H.; Sobanska, S.; Trcera, N.; Sorieul, S.; Cécillon, L.; Ouerdane, L.; Legros, S.; Sarret, G. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J. Hazard. Mater. 2014, 273, 17–26. [Google Scholar] [CrossRef]
- Su, Y.; Ashworth, V.; Kim, C.; Adeleye, A.S.; Rolshausen, P.; Roper, C.; White, J.; Jassby, D. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environ. Sci. Nano 2019, 6, 2311–2331. [Google Scholar] [CrossRef]
- Lv, J.; Christie, P.; Zhang, S. Uptake, Translocation, and Transformation of Metal-based Nanoparticles in Plants: Recent Ad-vances and Methodological Challenges. Environ. Sci. Nano 2019, 6, 41–59. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Latta, D.E.; McLean, J.E.; Britt, D.W.; Boyanov, M.I.; Anderson, A.J. Fate of CuO and ZnO Nano and Micro Par-ticles in the Plant Environment. Environ. Sci. Technol. 2013, 47, 4734–4742. [Google Scholar] [CrossRef] [PubMed]
Composition | Polyol Coating (% w/w) | dXRDn (nm) | DLS (nm) | ζ-Potential (mV) |
---|---|---|---|---|
CuZn@DEG NFs | 23 | 35 ± 1.2 | 306 | −16.5 |
ZnO@PEG NFs | 63 | 18 ± 0.7 | 338 | +2.5 |
CuZn@DEG | NFs | ZnO@PEG NFs | |
---|---|---|---|
Time (h) | Cu2+ | Zn2+ | Zn2+ |
24 | 4.41 | 13.17 | 1.03 |
48 | 4.56 | 13.30 | 2.99 |
72 | 5.31 | 14.74 | 3.06 |
96 | 6.51 | 16.03 | 3.75 |
Treatment | Anet (Mean ± SD) | CCI (Mean ± SD) | QY (Mean ± SD) |
---|---|---|---|
Control | 2.99 ± 0.67 c | 7.66 ± 0.58 c | 0.71 ± 0.013 b |
CuZn@DEG NFs | 3.00 ± 0.34 c | 11.12 ± 1.81 a | 0.68 ± 0.052 b |
ZnO@DEG NFs | 4.70 ± 0.34 a | 11.46 ± 1.10 a | 0.72 ± 0.012 a |
KOCIDE 2000 | 3.88 ± 0.28 b | 9.82 ± 1.63 b | 0.69 ± 0.030 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tryfon, P.; Kamou, N.N.; Mourdikoudis, S.; Karamanoli, K.; Menkissoglu-Spiroudi, U.; Dendrinou-Samara, C. CuZn and ZnO Nanoflowers as Nano-Fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, Translocation, and Impact after Foliar Application. Materials 2021, 14, 7600. https://doi.org/10.3390/ma14247600
Tryfon P, Kamou NN, Mourdikoudis S, Karamanoli K, Menkissoglu-Spiroudi U, Dendrinou-Samara C. CuZn and ZnO Nanoflowers as Nano-Fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, Translocation, and Impact after Foliar Application. Materials. 2021; 14(24):7600. https://doi.org/10.3390/ma14247600
Chicago/Turabian StyleTryfon, Panagiota, Nathalie N. Kamou, Stefanos Mourdikoudis, Katerina Karamanoli, Urania Menkissoglu-Spiroudi, and Catherine Dendrinou-Samara. 2021. "CuZn and ZnO Nanoflowers as Nano-Fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, Translocation, and Impact after Foliar Application" Materials 14, no. 24: 7600. https://doi.org/10.3390/ma14247600
APA StyleTryfon, P., Kamou, N. N., Mourdikoudis, S., Karamanoli, K., Menkissoglu-Spiroudi, U., & Dendrinou-Samara, C. (2021). CuZn and ZnO Nanoflowers as Nano-Fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, Translocation, and Impact after Foliar Application. Materials, 14(24), 7600. https://doi.org/10.3390/ma14247600