Experimental Assessment of Perhydro-Dibenzyltoluene Dehydrogenation Reaction Kinetics in a Continuous Flow System for Stable Hydrogen Supply
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.1.1. Perhydro-Dibenzyltoluene
2.1.2. Catalyst
2.2. Experimental Setup
Reactor Description
2.3. Procedure and Analysis
3. Results and Discussion
3.1. Validation
3.2. Catalyst Temperature Distribution
3.3. Effect of WHSV on DoD
3.4. Kinetics Model for Dehydrogenation
3.5. Application of Dehydrogenation Kinetics for Reactor Design
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Nomenclature | Unit | Description |
mol/L | Molar concentration of H18-DBT | |
mol/L | Initial molar concentration of H18-DBT | |
kJ/mol | Activation energy | |
mol/s | Inlet molar flow of H18-DBT | |
Rate constants | ||
Pre-exponential factor | ||
Reaction order | ||
mol | Moles of H18-DBT | |
mol/min | Molar flow rate of H2 | |
kg/h | Initial mass flow rate of reactants | |
mol/kg s | Reaction rate | |
J/mol K | Gas constants | |
T | °C | Temperature |
L | Volume of LOHC+ | |
kg | Weight of catalyst | |
WHSV | h−1 | Weight hour space velocity |
Fractional conversion of H18-DBT | ||
Fractional conversion at the outlet | ||
Initial concentration of H18-DBT | ||
DBT | Dibenzyl toluene | |
DoD | Degree of dehydrogenation | |
DoH | Degree of hydrogenation | |
H0-DBT | Dibenzyl toluene (unloaded) | |
H18-DBT | Perhydro-dibenzyltoluene (full loaded) | |
LOHC | Liquid organic hydrogen carrier | |
LOHC+ | Hydrogenated form of LOHC | |
LOHC− | Dehydrogenated form of LOHC | |
PFR | Plug flow reactor |
References
- Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.L.; Parmesan, C.; et al. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 2013, 8, e81648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisingh, D.; Zhang, Z.; Moore, J.C.; Qiao, Q.; Li, Q. Recent Advances in Carbon Emissions Reduction: Policies, Technologies, Monitoring, Assessment and Modeling. J. Clean. Prod. 2015, 103, 1–12. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The Threat to Climate Change Mitigation Posed by the Abundance of Fossil Fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.M.; Murad, M.W.; Noman, A.H.M.; Ozturk, I. Relationships among Carbon Emissions, Economic Growth, Energy Consumption and Population Growth: Testing Environmental Kuznets Curve Hypothesis for Brazil, China, India and Indonesia. Ecol. Indic. 2016, 70, 466–479. [Google Scholar] [CrossRef]
- Arroyo, F.; Miguel, L.J. Analysis of Energy Demand Scenarios in Ecuador: National Government Policy Perspectives and Global Trend to Reduce CO2 Emissions. Int. J. Energy Econ. Policy 2019, 9, 364–374. [Google Scholar] [CrossRef]
- Naseem, M.; Lee, S. Thermodynamic Analysis of a New Method for Producing Electrical Energy from Natural Gas Hydrates. Energy Rep. 2020, 6, 1748–1759. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and Evaluation of Hydrogen Production Methods for Better Sustainability. Int. J. Hydrogen Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Gahleitner, G. Hydrogen from Renewable Electricity: An International Review of Power-to-Gas Pilot Plants for Stationary Applications. Int. J. Hydrogen Energy 2013, 38, 2039–2061. [Google Scholar] [CrossRef]
- Fikrt, A.; Brehmer, R.; Milella, V.O.; Müller, K.; Bösmann, A.; Preuster, P.; Alt, N.; Schlücker, E.; Wasserscheid, P.; Arlt, W. Dynamic Power Supply by Hydrogen Bound to a Liquid Organic Hydrogen Carrier. Appl. Energy 2017, 194, 1–8. [Google Scholar] [CrossRef]
- Jorschick, H.; Vogl, M.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Hydrogenation of Liquid Organic Hydrogen Carrier Systems Using Multicomponent Gas Mixtures. Int. J. Hydrogen Energy 2019, 44, 31172–31182. [Google Scholar] [CrossRef]
- Inhetveen, P.; Alt, N.S.A.; Schluecker, E. Measurement of the Hydrogenation Level of Dibenzyltoluene in an Innovative Energy Storage System. Vib. Spectrosc. 2016, 83, 85–93. [Google Scholar] [CrossRef]
- Teichmann, D.; Arlt, W.; Wasserscheid, P.; Freymann, R. A Future Energy Supply Based on Liquid Organic Hydrogen Carriers (LOHC). Energy Environ. Sci. 2011, 4, 2767–2773. [Google Scholar] [CrossRef]
- Aslam, R.; Müller, K.; Müller, M.; Koch, M.; Wasserscheid, P.; Arlt, W. Measurement of Hydrogen Solubility in Potential Liquid Organic Hydrogen Carriers. J. Chem. Eng. Data 2016, 61, 643–649. [Google Scholar] [CrossRef]
- Heim, L.E.; Thiel, D.; Gedig, C.; Deska, J.; Prechtl, M.H.G. Bioinduced Room-Temperature Methanol Reforming. Angew. Chem. Int. Ed. 2015, 54, 10308–10312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic Acid as a Hydrogen Storage Material—Development of Homogeneous Catalysts for Selective Hydrogen Release. Chem. Soc. Rev. 2016, 45, 3954–3988. [Google Scholar] [CrossRef]
- Trincado, M.; Sinha, V.; Rodriguez-Lugo, R.E.; Pribanic, B.; de Bruin, B.; Grützmacher, H. Homogeneously Catalysed Conversion of Aqueous Formaldehyde to H2 and Carbonate. Nat. Commun. 2017, 8, 14990. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge, H.; Gladiali, S.; Beller, M. Low-Temperature Aqueous-Phase Methanol Dehydrogenation to Hydrogen and Carbon Dioxide. Nature 2013, 495, 85–89. [Google Scholar] [CrossRef]
- Luo, J.; Kar, S.; Rauch, M.; Montag, M.; Ben-David, Y.; Milstein, D. Efficient Base-Free Aqueous Reforming of Methanol Homogeneously Catalyzed by Ruthenium Exhibiting a Remarkable Acceleration by Added Catalytic Thiol. J. Am. Chem. Soc. 2021, 143, 17284–17291. [Google Scholar] [CrossRef] [PubMed]
- Weilhard, A.; Qadir, M.I.; Sans, V.; Dupont, J. Selective CO2 Hydrogenation to Formic Acid with Multifunctional Ionic Liquids. ACS Catal. 2018, 8, 1628–1634. [Google Scholar] [CrossRef] [Green Version]
- Fellay, C.; Yan, N.; Dyson, P.J.; Laurenczy, G. Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study. Chem. Eur. J. 2009, 15, 3752–3760. [Google Scholar] [CrossRef] [PubMed]
- Fukuzumi, S.; Kobayashi, T.; Suenobu, T. Unusually Large Tunneling Effect on Highly Efficient Generation of Hydrogen and Hydrogen Isotopes in PH-Selective Decomposition of Formic Acid Catalyzed by a Heterodinuclear Iridium−Ruthenium Complex in Water. J. Am. Chem. Soc. 2010, 132, 1496–1497. [Google Scholar] [CrossRef]
- Aakko-Saksa, P.T.; Cook, C.; Kiviaho, J.; Repo, T. Liquid Organic Hydrogen Carriers for Transportation and Storing of Renewable Energy—Review and Discussion. J. Power Sources 2018, 396, 803–823. [Google Scholar] [CrossRef]
- Modisha, P.M.; Ouma, C.N.M.; Garidzirai, R.; Wasserscheid, P.; Bessarabov, D. The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy Fuels 2019, 33, 2778–2796. [Google Scholar] [CrossRef]
- Peters, W.; Eypasch, M.; Frank, T.; Schwerdtfeger, J.; Körner, C.; Bösmann, A.; Wasserscheid, P. Efficient Hydrogen Release from Perhydro-N-Ethylcarbazole Using Catalyst-Coated Metallic Structures Produced by Selective Electron Beam Melting. Energy Environ. Sci. 2015, 8, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Niermann, M.; Beckendorff, A.; Kaltschmitt, M.; Bonhoff, K. Liquid Organic Hydrogen Carrier (LOHC)—Assessment Based on Chemical and Economic Properties. Int. J. Hydrogen Energy 2019, 44, 6631–6654. [Google Scholar] [CrossRef]
- Naseem, M.; Usman, M.; Lee, S. A Parametric Study of Dehydrogenation of Various Liquid Organic Hydrogen Carrier (LOHC) Materials and Its Application to Methanation Process. Int. J. Hydrogen Energy 2021, 46, 4100–4115. [Google Scholar] [CrossRef]
- Cui, X.; Ishii, M.; Tsujimura, T.; Taniguchi, T.; Hashimoto, Y.; Nanba, T. Effect of Iterative Use of Methylcyclohexane as a Hydrogen Carrier on Catalytic Activity and By-Product Formation. J. Jpn. Petrol. Inst. 2019, 62, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Alhumaidan, F.; Tsakiris, D.; Cresswell, D.; Garforth, A. Hydrogen Storage in Liquid Organic Hydride: Selectivity of MCH Dehydrogenation over Monometallic and Bimetallic Pt Catalysts. Int. J. Hydrogen Energy 2013, 38, 14010–14026. [Google Scholar] [CrossRef]
- Usman, M.R.; Alotaibi, F.M.; Aslam, R. Dehydrogenation-Hydrogenation of Methylcyclohexane-Toluene System on 1.0 Wt% Pt/Zeolite Beta Catalyst. Prog. React. Kinet. Mech. 2015, 40, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Brückner, N.; Obesser, K.; Bösmann, A.; Teichmann, D.; Arlt, W.; Dungs, J.; Wasserscheid, P. Evaluation of Industrially Applied Heat-Transfer Fluids as Liquid Organic Hydrogen Carrier Systems. ChemSusChem 2014, 7, 229–235. [Google Scholar] [CrossRef]
- Jorschick, H.; Geißelbrecht, M.; Eßl, M.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Benzyltoluene/Dibenzyltoluene-Based Mixtures as Suitable Liquid Organic Hydrogen Carrier Systems for Low Temperature Applications. Int. J. Hydrogen Energy 2020, 45, 14897–14906. [Google Scholar] [CrossRef]
- Aslam, R.; Muller, K. Adsorption Isotherm of Dibenzyl Toluene and Its Partially Hydrogenated Forms over Phenyl Hexyl Silica. Mod. Chem. Appl. 2017, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Hamayun, M.H.; Maafa, I.M.; Hussain, M.; Aslam, R. Simulation Study to Investigate the Effects of Operational Conditions on Methylcyclohexane Dehydrogenation for Hydrogen Production. Energies 2020, 13, 206. [Google Scholar] [CrossRef] [Green Version]
- Wunsch, A.; Berg, T.; Pfeifer, P. Hydrogen Production from the LOHC Perhydrodibenzyl-Toluene and Purification Using a 5 Μm PdAg-Membrane in a Coupled Microstructured System. Materials 2020, 13, 277. [Google Scholar] [CrossRef] [Green Version]
- Bulgarin, A.; Jorschick, H.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Purity of Hydrogen Released from the Liquid Organic Hydrogen Carrier Compound Perhydro Dibenzyltoluene by Catalytic Dehydrogenation. Int. J. Hydrogen Energy 2020, 45, 712–720. [Google Scholar] [CrossRef]
- Modisha, P.; Gqogqa, P.; Garidzirai, R.; Ouma, C.N.M.; Bessarabov, D. Evaluation of Catalyst Activity for Release of Hydrogen from Liquid Organic Hydrogen Carriers. Int. J. Hydrogen Energy 2019, 44, 21926–21935. [Google Scholar] [CrossRef]
- Preuster, P.K.E. Entwicklung Eines Reaktors Zur Dehydrierung Chemischer Wasserstoffträger Als Bestandteil Eines Dezentralen, Stationären Energiespeichers. Ph.D. Thesis, University of Erlangen-Nuremberg, Erlangen, Germany, 2017. [Google Scholar]
- Peters, R.; Deja, R.; Fang, Q.; Nguyen, V.N.; Preuster, P.; Blum, L.; Wasserscheid, P.; Stolten, D. A Solid Oxide Fuel Cell Operating on Liquid Organic Hydrogen Carrier-Based Hydrogen—A Kinetic Model of the Hydrogen Release Unit and System Performance. Int. J. Hydrogen Energy 2019, 44, 13794–13806. [Google Scholar] [CrossRef]
- Wunsch, A.; Mohr, M.; Pfeifer, P. Intensified LOHC-Dehydrogenation Using Multi-Stage Microstructures and Pd-Based Membranes. Membranes 2018, 8, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, K.; Aslam, R.; Fischer, A.; Stark, K.; Wasserscheid, P.; Arlt, W. Experimental Assessment of the Degree of Hydrogen Loading for the Dibenzyl Toluene Based LOHC System. Int. J. Hydrogen Energy 2016, 41, 22097–22103. [Google Scholar] [CrossRef]
- Chen, X.; Huo, X.; Liu, J.; Wang, Y.; Werth, C.J.; Strathmann, T.J. Exploring beyond Palladium: Catalytic Reduction of Aqueous Oxyanion Pollutants with Alternative Platinum Group Metals and New Mechanistic Implications. Chem. Eng. J. 2017, 313, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, J.; Kim, T.; Han, G.; Lee, J.; Lee, K.; Bae, J. Pt/CeO2 Catalyst Synthesized by Combustion Method for Dehydrogenation of Perhydro-Dibenzyltoluene as Liquid Organic Hydrogen Carrier: Effect of Pore Size and Metal Dispersion. Int. J. Hydrogen Energy 2021, 46, 5520–5529. [Google Scholar] [CrossRef]
- Modisha, P.M.; Jordaan, J.H.L.; Bösmann, A.; Wasserscheid, P.; Bessarabov, D. Analysis of Reaction Mixtures of Perhydro-Dibenzyltoluene Using Two-Dimensional Gas Chromatography and Single Quadrupole Gas Chromatography. Int. J. Hydrogen Energy 2018, 43, 5620–5636. [Google Scholar] [CrossRef]
Method | Raw Materials | Brief Description |
---|---|---|
Electrolysis
| Water | Water is split into H2 and O2 by using direct current |
Fossil fuel reforming
| Fossil fuels | Fossil fuels are convered into CO2 and H2 by using a chemical reaction with catalyst |
Thermolysis | Water | Water is thermally decomposed at high temperature |
Biophotolysis | Biomass + water | Microbes or bacteria are used to generate H2 as a by-product |
Plasma arc decomposition | Fossil fuels | Natural gas is passed through a plasma arc |
Hybrid thermochemical cycles | Water | Electrical and thermal energy are used for making cyclic chemical reaction |
LOHC | Liquefaction | Compression | |
---|---|---|---|
Gravimetric hydrogen storage capacity (wt%) [13,14,15,16] | 4.3~12.5 | 6.5–14 | 3–4.8 |
Operating temperature (°C) [13,14,15,16,17,18,19,20,21] | Ambient (storage) 25~420 (dehydrogenation) | −253 | Ambient |
Operating pressure (MPa) [13,22] | 0.1~1 | 0.1 | 35–70 |
Storage time (Stability) [22] | Unlimited | Losses | Limited |
Infrastructure compatibility [22] | Excellent | No | No |
Reversibility [22] | Good | Not relevant | Not relevant |
Process, transportation cost [22] | USD 0.5/kg H2 (Dibenzyl toluene) | USD 0.1~4/kg H2 | USD 0.1~4/kg H2 |
Distribution cost [22] | - | USD 1.1~1.8/kg H2 | USD 1.1~1.8/kg H2 |
Property | DBT | NEC | TOL |
---|---|---|---|
H0/H18 | H0/H12 | H0/H6 | |
Storage capacity (wt.%) | 6.2 | 5.8 | 6.2 |
Dehydrogenation Temperature (°C) | 250~320 | 180~270 | 250~450 |
Boiling point | 407/355 | 270/280 | 111/101 |
Vapor pressure at 40 °C (Pa) | 0.07/0.04 | 0.1/4.4 | 7880/10,900 |
Price (USD/kg) | 4.66 | 46.6 | 0.35 |
Year | Reference | Type | Catalyst (wt%) | Pressure (bar) | Temperature (°C) | Values | ||
---|---|---|---|---|---|---|---|---|
2020 | Bulgarin et al. [35] | PFR | 0.3% Pt–Al2O3 | 1 | 287~297 | 117 | 649,000 | 1 |
2020 | Bulgarin et al. [35] | PFR | 0.3% Pt–Al2O3 | 2.5 | 287~297 | 149 | 266,000,000 | 1 |
2019 | Modisha et al. [36] | Batch | 1% Pt–Al2O3 | na | 290~320 | 205 | 1 | |
2019 | Modisha et al. [36] | Batch | 1% Pd–Al2O3 | na | 290~320 | 84 | 22,629 | 1 |
2019 | Modisha et al. [36] | Batch | 1% Pd/Pt–Al2O3 | na | 290~320 | 65 | 234.77 | 1 |
2019 2017 | Preuster, Peters et al. [37,38] | Batch | 0.5% Pt–Al2O3 | 1~5 | 260~310 | 119.8 | 125.24 | 1.98 |
2018 | Wunsch et al. [39] | PFR | Pd–Ag | 4 | 300~350 | 156.8 ± 28.5 | variable |
Property | H0-DBT | H18-DBT |
---|---|---|
Density @ 25 °C (kg/m3) | 1.040 | 0.9109 |
Refractive index @ 25 ℃ | 1.602 | 1.493 |
Boiling point (°C) [26] | 406.6 | 354.95 |
Name | Unit | Value | Reference |
---|---|---|---|
BET surface area | (m2/g) | 97, 94 | [41,42] |
Average pore size | (nm) | 9.8, 9.2 | [41,42] |
Metal dispersion | (%) | 22.1, 23.4 | [41,42] |
Metal particle diameter | (nm) | 5.12, 4.8 | [41,42] |
Metal surface area | (m2/g metal) | 54.5 | [42] |
Variable | Experiment Conditions |
---|---|
Temperature (°C) | 250, 260, 270, 280, 290, 300, 310, 320 |
WHSV (h−1) | 0.5, 1, 1.5, 2, 3, 3.5, 4.5, 6, 7.5, 9, 12, 15, 20, 26, 33, 40, 52.75, 67 |
0.3, 0.5, 0.7, 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Naseem, M.; Lee, S. Experimental Assessment of Perhydro-Dibenzyltoluene Dehydrogenation Reaction Kinetics in a Continuous Flow System for Stable Hydrogen Supply. Materials 2021, 14, 7613. https://doi.org/10.3390/ma14247613
Park S, Naseem M, Lee S. Experimental Assessment of Perhydro-Dibenzyltoluene Dehydrogenation Reaction Kinetics in a Continuous Flow System for Stable Hydrogen Supply. Materials. 2021; 14(24):7613. https://doi.org/10.3390/ma14247613
Chicago/Turabian StylePark, Sanghyoun, Mujahid Naseem, and Sangyong Lee. 2021. "Experimental Assessment of Perhydro-Dibenzyltoluene Dehydrogenation Reaction Kinetics in a Continuous Flow System for Stable Hydrogen Supply" Materials 14, no. 24: 7613. https://doi.org/10.3390/ma14247613
APA StylePark, S., Naseem, M., & Lee, S. (2021). Experimental Assessment of Perhydro-Dibenzyltoluene Dehydrogenation Reaction Kinetics in a Continuous Flow System for Stable Hydrogen Supply. Materials, 14(24), 7613. https://doi.org/10.3390/ma14247613