Evaluation of the Influence of the Combination of pH, Chloride, and Sulfate on the Corrosion Behavior of Pipeline Steel in Soil Using Response Surface Methodology
Abstract
:1. Introduction
2. Investigation Scheme Design of Experiment
2.1. Response Surface Methodology and Box–Behnken Design
2.2. Identifying the Range of the Values to Investigate and Preparing Reagents
2.3. Design of Experiment and Design Matrix
2.4. Conducting Electrochemical Tests
3. Results and Discussion
3.1. Electrochemical Test, Second-Order Polynomial Equation, and Statistical Analysis
3.2. Validity Evaluation of the Fitted Model
3.3. Preliminary Study of the Effects of pH, Chloride, and Sulfate Concentrations on the Corrosion Current Density in a Soil Environment
3.4. Representation of Model: Response Surface Plotting and Contour Plot of Corrosion Current Density with Each Factor of Carbon Steel in the Soil Environment
3.5. Interactive Effect of pH and Chloride Concentration (ppm)
3.6. Interactive Effect of pH and Sulfate Concentration (ppm)
3.7. Interactive Effect of Chloride and Sulfate Concentrations (ppm)
4. Conclusions
- The effects of pH, chloride concentration and sulfate concentration on the corrosion behavior of a carbon steel pipeline in a soil environment were investigated by statistical method RSM. Research results could be concluded that chloride and sulfate concentrations are a negative influence, pH seemed to be independent of the corrosion current density. A useful mathematical model was suggested for use in exploring methods to protect the buried pipeline.
- The effect level of independent variables on the corrosion rate was found to follow an increasing sequence of pH < sulfate concentration < chloride concentration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Honegger, D.; Wijewickreme, D. Seismic risk assessment for oil and gas pipelines. In Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems; Woodhead Publishing: Sawston, UK, 2013; pp. 682–715. [Google Scholar]
- Chen, X.; Zhao, Y. Research on corrosion protection of buried steel pipeline. Engineering 2017, 9, 504. [Google Scholar] [CrossRef] [Green Version]
- King, F.; Ahonen, L.; Taxén, C.; Vuorinen, U.; Werme, L. Copper Corrosion under Expected Conditions in a Deep Geologic Repository; Technical Report; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2001. [Google Scholar]
- Szala, M.; Łukasik, D. Pitting corrosion of the resistance welding joints of stainless steel ventilation grille operated in swimming pool environment. Int. J. Corros. 2018, 2018, 9408670. [Google Scholar] [CrossRef]
- Stefanoni, M.; Angst, U.M.; Elsener, B. Kinetics of electrochemical dissolution of metals in porous media. Nat. Mater. 2019, 18, 942–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, N.-T.; Hong, M.-S.; Kim, J.-G. Optimizing the Required Cathodic Protection Current for Pre-Buried Pipelines Using Electrochemical Acceleration Methods. Materials 2021, 14, 579. [Google Scholar] [CrossRef]
- Saupi, S.; Sulaiman, M.; Masri, M. Effects of soil properties to corrosion of underground pipelines: A review. J. Trop. Resour. Sustain. Sci. 2015, 3, 14–18. [Google Scholar] [CrossRef]
- He, B.; Han, P.; Lu, C.; Bai, X. Effect of soil particle size on the corrosion behavior of natural gas pipeline. Eng. Fail. Anal. 2015, 58, 19–30. [Google Scholar] [CrossRef]
- Hou, Y.; Lei, D.; Li, S.; Yang, W.; Li, C.-Q. Experimental investigation on corrosion effect on mechanical properties of buried metal pipes. Int. J. Corros. 2016, 2016, 5808372. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Jiang, G.; Chen, Y.; Zhao, P.; Tian, Y. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Sci. Rep. 2017, 7, 6865. [Google Scholar] [CrossRef]
- Wu, Y.H.; Liu, T.M.; Luo, S.X.; Sun, C. Corrosion characteristics of Q235 steel in simulated Yingtan soil solutions. Mater. Werkst. 2010, 41, 142–146. [Google Scholar] [CrossRef]
- Barbalat, M.; Lanarde, L.; Caron, D.; Meyer, M.; Vittonato, J.; Castillon, F.; Fontaine, S.; Refait, P. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection. Corros. Sci. 2012, 55, 246–253. [Google Scholar] [CrossRef]
- Talib, N.S.R.; Halmi, M.I.E.; Gani, S.S.A.; Zaidan, U.H.; Shukor, M.Y.A. Artificial neural networks (ANNs) and response surface methodology (RSM) approach for modelling the optimization of chromium (VI) reduction by newly isolated Acinetobacter radioresistens strain NS-MIE from agricultural soil. BioMed Res. Int. 2019, 2019, 5785387. [Google Scholar]
- Aydin, M.; Uslu, S.; Çelik, M.B. Performance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: A combined application of ANN and RSM based optimization. Fuel 2020, 269, 117472. [Google Scholar] [CrossRef]
- Khatti, T.; Naderi-Manesh, H.; Kalantar, S.M. Application of ANN and RSM techniques for modeling electrospinning process of polycaprolactone. Neural. Comput. Appl. 2019, 31, 239–248. [Google Scholar] [CrossRef]
- Gunst, R.F.; Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sharma, Y.; Srivastava, V.; Singh, V.; Kaul, S.; Weng, C.-H. Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol. 2009, 30, 583–609. [Google Scholar] [CrossRef]
- Rajkumar, K.; Muthukumar, M. Response surface optimization of electro-oxidation process for the treatment of CI Reactive Yellow 186 dye: Reaction pathways. Appl. Water Sci. 2017, 7, 637–652. [Google Scholar] [CrossRef] [Green Version]
- Goh, K.-H.; Lim, T.-T.; Chui, P.-C. Evaluation of the effect of dosage, pH and contact time on high-dose phosphate inhibition for copper corrosion control using response surface methodology (RSM). Corros. Sci. 2008, 50, 918–927. [Google Scholar] [CrossRef]
- Box, G.E.; Draper, N.R. Empirical Model-Building and Response Surfaces; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Montgomery, D.P.; Plate, C.A.; Jones, M.; Jones, J.; Rios, R.; Lambert, D.K.; Schumtz, N.; Wiedmeier, S.E.; Burnett, J.; Ail, S.; et al. Using umbilical cord tissue to detect fetal exposure to illicit drugs: A multicentered study in Utah and New Jersey. Am. J. Perinatol. 2008, 28, 750–753. [Google Scholar] [CrossRef] [Green Version]
- Breig, S.J.M.; Luti, K.J.K. Response Surface Methodology: A Review on Its Applications and Challenges in Microbial Cultures. Mater. Today Proc. 2021, 42, 2277–2284. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, S.K. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)-An endeavor to diminish probable cancer risk. Sci. Rep. 2019, 9, 18339. [Google Scholar]
- Kim, J.-G.; Kim, Y.-W. Cathodic protection criteria of thermally insulated pipeline buried in soil. Corros. Sci. 2001, 43, 2011–2021. [Google Scholar] [CrossRef]
- So, Y.-S.; Hong, M.-S.; Lim, J.-M.; Kim, W.-C.; Kim, J.-G. Calibrating the impressed anodic current density for accelerated galvanostatic testing to simulate the long-term corrosion behavior of buried pipeline. Materials 2021, 14, 2100. [Google Scholar] [CrossRef]
- Ahmadi, M.; Rahmani, K.; Rahmani, A.; Rahmani, H. Removal of benzotriazole by Photo-Fenton like process using nano zero-valent iron: Response surface methodology with a Box-Behnken design. Pol. J. Chem. Technol. 2017, 19, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Di Leo, G.; Sardanelli, F. Statistical significance: p value, 0.05 threshold, and applications to radiomics—Reasons for a conservative approach. Eur. Radiol. Exp. 2020, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.-Z.; Du, Y.-X.; Lu, M.-X.; Liang, Y.; Jiang, Z.-T.; Dong, L. Effect of pH value on corrosion of carbon steel under an applied alternating current. Mater. Corros. 2015, 66, 1467–1479. [Google Scholar] [CrossRef]
- Prawoto, Y.; Ibrahim, K.; Wan Nik, W.B. Effect of pH and chloride concentration on the corrosion of duplex stainless steel. Arab. J. Sci. Eng. 2009, 34, 115. [Google Scholar]
- Ismail, M.; Noor, N.M.; Yahaya, N.; Abdullah, A.; Rasol, R.M.; Rashid, A.S.A. Effect of pH and temperature on corrosion of steel subject to sulphate-reducing bacteria. J. Environ. Sci. Technol. 2014, 7, 209–217. [Google Scholar] [CrossRef]
- Wasim, M.; Shoaib, S. Influence of chemical properties of soil on the corrosion morphology of carbon steel pipes. In Metals in Soil-Contamination and Remediation; IntechOpen: London, UK, 2019. [Google Scholar]
- Al-Sodani, K.A.A.; Maslehuddin, M.; Al-Amoudi, O.S.B.; Saleh, T.A.; Shameem, M. Efficiency of generic and proprietary inhibitors in mitigating corrosion of carbon steel in chloride-Sulfate Environments. Sci. Rep. 2018, 8, 11443. [Google Scholar] [CrossRef]
- Arzola, S.; Palomar-Pardavé, M.; Genesca, J. Effect of resistivity on the corrosion mechanism of mild steel in sodium sulfate solutions. J. Appl. Electrochem. 2003, 33, 1233–1237. [Google Scholar] [CrossRef]
Investigated Factor | pH | Chloride [Cl−], ppm | Sulfate [SO42−], ppm |
---|---|---|---|
Initial value | 6.8 | 85.2 | 70.04 |
Investigated value range | 4–8 | 85.2–1085.2 | 70.04–670.04 |
Variable | Code Values | ||
---|---|---|---|
−1 (Minimum) | 0 (Medium) | 1 (Maximum) | |
X1, pH | 4 | 6 | 8 |
X2, Chloride (ppm) | 85.20 | 585.20 | 1085.20 |
X3, Sulfate (ppm) | 70.04 | 370.04 | 670.04 |
Standard Run | Coded Parameter | Real Parameter | ||||
---|---|---|---|---|---|---|
X1 | X2 | X3 | pH | [Cl−], (ppm) | [SO42−], (ppm) | |
1 | −1 | −1 | 0 | 4 | 85.2 | 370.04 |
2 | 1 | −1 | 0 | 8 | 85.2 | 370.04 |
3 | −1 | 1 | 0 | 4 | 1085.2 | 370.04 |
4 | 1 | 1 | 0 | 8 | 1085.2 | 370.04 |
5 | −1 | 0 | −1 | 4 | 585.2 | 70.04 |
6 | 1 | 0 | −1 | 8 | 585.2 | 70.04 |
7 | −1 | 0 | 1 | 4 | 585.2 | 670.04 |
8 | 1 | 0 | 1 | 8 | 585.2 | 670.04 |
9 | 0 | −1 | −1 | 6 | 85.2 | 70.04 |
10 | 0 | 1 | −1 | 6 | 1085.2 | 70.04 |
11 | 0 | −1 | 1 | 6 | 85.2 | 670.04 |
12 | 0 | 1 | 1 | 6 | 1085.2 | 670.04 |
13 | 0 | 0 | 0 | 6 | 585.2 | 370.04 |
14 | 0 | 0 | 0 | 6 | 585.2 | 370.04 |
15 | 0 | 0 | 0 | 6 | 585.2 | 370.04 |
Experiment Run | Factor | ||||
---|---|---|---|---|---|
pH | Chloride, ppm | Sulfate, ppm | Experiment Observation | Predicted | |
9 | 6 | 85.2 | 70.04 | 4.2 | 4.22 |
1 | 4 | 85.2 | 370.04 | 4.9 | 4.88 |
2 | 8 | 85.2 | 370.04 | 4.8 | 4.84 |
11 | 6 | 85.2 | 670.04 | 5 | 5.15 |
5 | 4 | 585.2 | 70.04 | 5.4 | 5.23 |
6 | 8 | 585.2 | 70.04 | 5.5 | 5.31 |
13 | 6 | 585.2 | 370.04 | 5.7 | 5.57 |
14 | 6 | 585.2 | 370.04 | 5.8 | 5.57 |
15 | 6 | 585.2 | 370.04 | 5.6 | 5.57 |
7 | 4 | 585.2 | 670.04 | 6.2 | 6.18 |
8 | 8 | 585.2 | 670.04 | 6.3 | 6.23 |
10 | 6 | 1085.2 | 70.04 | 8.6 | 7.99 |
3 | 4 | 1085.2 | 370.04 | 9.1 | 8.55 |
4 | 8 | 1085.2 | 370.04 | 9.2 | 8.7 |
12 | 6 | 1085.2 | 670.04 | 9.4 | 8.91 |
Source | Degree of Freedom | Adj. Sum of Square | Adj. Mean Square | F-Value | Fcritical | p-Value | Remarks |
---|---|---|---|---|---|---|---|
Model | 9 | 43.8940 | 4.8771 | 812.85 | 4.7725 | 0.000 | Significant |
Error | 5 | 0.0300 | 0.0060 | - | - | - | - |
Null hypothesis: All the coefficients are zero | |||||||
Lack-of-Fit | 3 | 0.0100 | 0.0033 | 0.33 | 19.1643 | 0.808 | Reasonable |
Pure Error | 2 | 0.0200 | 0.0100 | - | - | - | - |
Total | 14 | 43.5200 | - | - | - | - | - |
Null hypothesis: Model is an appropriate fit for the data→No lack of fit | |||||||
R2: 99.93% | R2 (adj.): 99.81% | R2 (pred.): 99.53% |
Term | Coefficient | Standard Error Coefficient | T for H0a Coefficient = 0 | p-Value |
---|---|---|---|---|
Constant | 5.7000 | 0.0447 | 127.46 | 0.000 |
pH | 0.0250 | 0.0274 | 0.91 | 0.403 |
[Cl−] | 2.1750 | 0.0274 | 79.42 | 0.000 |
[SO42−] | 0.4000 | 0.0274 | 14.61 | 0.000 |
pH | 0.1750 | 0.0403 | 4.34 | 0.007 |
Cl−] | 1.1250 | 0.0403 | 27.91 | 0.000 |
[SO42−] | −0.0250 | 0.0403 | −0.62 | 0.562 |
Cl−] | 0.0500 | 0.0387 | 1.29 | 0.253 |
SO42−] | 0.0000 | 0.0387 | 0.00 | 1.000 |
SO42−] | 0.0000 | 0.0387 | 0.00 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, N.T.; So, Y.-S.; Kim, W.-C.; Kim, J.-G. Evaluation of the Influence of the Combination of pH, Chloride, and Sulfate on the Corrosion Behavior of Pipeline Steel in Soil Using Response Surface Methodology. Materials 2021, 14, 6596. https://doi.org/10.3390/ma14216596
Chung NT, So Y-S, Kim W-C, Kim J-G. Evaluation of the Influence of the Combination of pH, Chloride, and Sulfate on the Corrosion Behavior of Pipeline Steel in Soil Using Response Surface Methodology. Materials. 2021; 14(21):6596. https://doi.org/10.3390/ma14216596
Chicago/Turabian StyleChung, Nguyen Thuy, Yoon-Sik So, Woo-Cheol Kim, and Jung-Gu Kim. 2021. "Evaluation of the Influence of the Combination of pH, Chloride, and Sulfate on the Corrosion Behavior of Pipeline Steel in Soil Using Response Surface Methodology" Materials 14, no. 21: 6596. https://doi.org/10.3390/ma14216596
APA StyleChung, N. T., So, Y. -S., Kim, W. -C., & Kim, J. -G. (2021). Evaluation of the Influence of the Combination of pH, Chloride, and Sulfate on the Corrosion Behavior of Pipeline Steel in Soil Using Response Surface Methodology. Materials, 14(21), 6596. https://doi.org/10.3390/ma14216596