The Antibacterial Effects of Resin-Based Dental Sealants: A Systematic Review of In Vitro Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question
2.2. Search Strategies
2.3. Inclusion and Exclusion Criteria
2.4. Studies Screening and Selection
2.5. Data Extraction
2.6. Quality Assessment
2.7. Assessment of Heterogeneity
2.8. Data Synthesis
3. Results
3.1. Studies Selection
3.2. Risk of Bias Appraisal
3.3. Studies Characteristics
3.3.1. Samples
3.3.2. Antibacterial Agents/Compounds
3.3.3. Bacteria and Inoculum
3.3.4. Antibacterial Activity Assessment Methods
3.3.5. Other Properties and Tests
3.3.6. Control and Tested Groups
3.4. Summary of Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Oral Health Fact Sheet. 2012. Available online: http://www.who.int/mediacentre/factsheets/fs318/en/ (accessed on 20 November 2020).
- Petersen, P.E. The World Oral Health Report 2003: Continuous improvement of oral health in the 21st century--the approach of the WHO Global Oral Health Programme. Community Dent. Oral Epidemiol 2003, 31 (Suppl. 1), 3–23. [Google Scholar] [CrossRef] [PubMed]
- Paes Leme, A.F.; Koo, H.; Bellato, C.M.; Bedi, G.; Cury, J.A. The role of sucrose in cariogenic dental biofilm formation—New insight. J. Dent. Res. 2006, 85, 878–887. [Google Scholar] [CrossRef]
- Splieth, C.H.; Banerjee, A.; Bottenberg, P.; Breschi, L.; Campus, G.; Ekstrand, K.R.; Giacaman, R.A.; Haak, R.; Hannig, M.; Hickel, R.; et al. How to Intervene in the Caries Process in Children: A Joint ORCA and EFCD Expert Delphi Consensus Statement. Caries Res. 2020, 54, 297–305. [Google Scholar] [CrossRef]
- Opdam, N.J.M.; van de Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.D.N.J.M.; van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Sheiham, A. Minimal intervention in dental care. Med. Princ. Pract. 2002, 11, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Ahovuo-Saloranta, A.; Forss, H.; Walsh, T.; Nordblad, A.; Mäkelä, M.; Worthington, H.V. Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database Syst. Rev. 2017, 7, CD001830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, M.; Gonzalez-Cabezas, C. Evidence-Based Dentistry Caries Risk Assessment and Disease Management. Dent. Clin. N. Am. 2019, 63, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Delbem, A.C.B.; Brighenti, F.L.; Vieira, A.E.d.M.; Cury, J.A. In vitro comparison of the cariostatic effect between topical application of fluoride gels and fluoride toothpaste. J. Appl. Oral Sci. 2004, 12, 121–126. [Google Scholar] [CrossRef]
- Cocco, A.R.; Cuevas-Suárez, C.E.; Liu, Y.; Lund, R.G.; Piva, E.; Hwang, G. Anti-biofilm activity of a novel pit and fissure self-adhesive sealant modified with metallic monomers. Biofouling 2020, 36, 245–255. [Google Scholar] [CrossRef]
- Garcia, I.M.; Rodrigues, S.B.; de Souza Balbinot, G.; Visioli, F.; Leitune, V.C.B.; Collares, F.M. Quaternary ammonium compound as antimicrobial agent in resin-based sealants. Clin. Oral Investig. 2020, 24, 777–784. [Google Scholar] [CrossRef]
- Monteiro, J.C.; Stürmer, M.; Garcia, I.M.; Melo, M.A.; Sauro, S.; Leitune, V.C.B.; Collares, F.M. Dental Sealant Empowered by 1,3,5-Tri Acryloyl Hexahydro-1,3,5-Triazine and α-Tricalcium Phosphate for Anti-Caries Application. Polymers 2020, 12, 895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, P.; Hamood, A.; Mosley, T.; Gray, T.; Jarvis, C.; Webster, D.; Amaechi, B.; Enos, T.; Reid, T. Organo-selenium-containing dental sealant inhibits bacterial biofilm. J. Dent. Res. 2013, 92, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iheozor-Ejiofor, Z.; Worthington, H.V.; Walsh, T.; O’Malley, L.; Clarkson, J.E.; Macey, R.; Alam, R.; Tugwell, P.; Welch, V.; Glenny, A.-M. Water fluoridation for the prevention of dental caries. Cochrane Database Syst. Rev. 2015, 2015, CD010856. [Google Scholar] [CrossRef] [PubMed]
- Cury, J.A.; de Oliveira, B.H.; dos Santos, A.P.; Tenuta, L.M. Are fluoride releasing dental materials clinically effective on caries control? Dent. Mater. 2016, 32, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Pilecki, P.; Sauro, S.; Sherriff, M.; Watson, T.F.; Hosey, M.T. An in vitro investigation of pre-treatment effects before fissure sealing. Int. J. Paediatr. Dent. 2017, 27, 514–522. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; AlQarni, F.D.; Al-Dulaijan, Y.A.; Weir, M.D.; Oates, T.W.; Xu, H.H.; Melo, M.A.S. Tuning nano-amorphous calcium phosphate content in novel rechargeable antibacterial dental sealant. Materials 2018, 11, 1544. [Google Scholar] [CrossRef] [Green Version]
- GÜÇLÜ, Z.A.; Dönmez, N.; Hurt, A.P.; Coleman, N.J. Characterisation and microleakage of a new hydrophilic fissure sealant-UltraSeal XT®® hydro™. J. Appl. Oral Sci. 2016, 24, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-Y.; Kwon, J.-S.; Kim, K.-N.; Kim, K.-M. Enamel surface with pit and fissure sealant containing 45S5 bioactive glass. J. Dent. Res. 2016, 95, 550–557. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Balhaddad, A.A.; Garcia, I.M.; Hefni, E.; Collares, F.M.; Martinho, F.C.; Weir, M.D.; Xu, H.H.K.; Melo, M.A.S. Tooth sealing formulation with bacteria-killing surface and on-demand ion release/recharge inhibits early childhood caries key pathogens. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 3217–3227. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Garcia, I.M.; Vila, T.; Balhaddad, A.A.; Collares, F.M.; Weir, M.D.; Xu, H.H.K.; Melo, M.A.S. Multifunctional antibacterial dental sealants suppress biofilms derived from children at high risk of caries. Biomater. Sci. 2020, 8, 3472–3484. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Balhaddad, A.A.; Garcia, I.M.; Collares, F.M.; Weir, M.D.; Xu, H.H.; Melo, M.A.S. pH-responsive Calcium and Phosphate-Ion Releasing antibacterial Sealants on Carious Enamel lesions in vitro. J. Dent. 2020, 97, 103323. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Kim, J.Y.; Seo, J.Y.; Mangal, U.; Cha, J.Y.; Kwon, J.S.; Choi, S.H. Resin-Based Sealant with Bioactive Glass and Zwitterionic Material for Remineralisation and Multi-Species Biofilm Inhibition. Nanomaterials 2020, 10, 1581. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Alamri, A.; Salloot, Z.; Alshaia, A.; Ibrahim, M.S. The Effect of Bioactive Glass-Enhanced Orthodontic Bonding Resins on Prevention of Demineralization: A Systematic Review. Molecules 2020, 25, 2495. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.S.; Garcia, I.M.; Kensara, A.; Balhaddad, A.A.; Collares, F.M.; Williams, M.A.; Ibrahim, A.S.; Lin, N.J.; Weir, M.D.; Xu, H.H.K.; et al. How we are assessing the developing antibacterial resin-based dental materials? A scoping review. J. Dent. 2020, 99, 103369. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.S.; Ibrahim, A.S.; Balhaddad, A.A.; Weir, M.D.; Lin, N.J.; Tay, F.R.; Oates, T.W.; Xu, H.H.K.; Melo, M.A.S. A Novel Dental Sealant Containing Dimethylaminohexadecyl Methacrylate Suppresses the Cariogenic Pathogenicity of Streptococcus mutans Biofilms. Int. J. Mol. Sci. 2019, 20, 3491. [Google Scholar] [CrossRef] [Green Version]
- Swetha, D.L.; Vinay, C.; Uloopi, K.S.; RojaRamya, K.S.; Chandrasekhar, R. Antibacterial and Mechanical Properties of Pit and Fissure Sealants Containing Zinc Oxide and Calcium Fluoride Nanoparticles. Contemp. Clin. Dent. 2019, 10, 477–482. [Google Scholar] [CrossRef]
- Zmener, O.; Pameijer, C. Bacterial microleakage of a bioactive pit &fissure sealant. Am. J. Dent. 2019, 32, 219–222. [Google Scholar]
- Yu, F.; Yu, H.; Lin, P.; Dong, Y.; Zhang, L.; Sun, X.; Liu, Z.; Guo, H.; Huang, L.; Chen, J. Effect of an Antibacterial Monomer on the Antibacterial Activity of a Pit-and-Fissure Sealant. PLoS ONE 2016, 11, e0162281. [Google Scholar] [CrossRef]
- Rajabnia, R.; Ghasempour, M.; Gharekhani, S.; Gholamhoseinnia, S.; Soroorhomayoon, S. Anti-Streptococcus mutans property of a chitosan: Containing resin sealant. J. Int. Soc. Prev. Community Dent. 2016, 6, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Shanmugaavel, A.; Asokan, S.; John, J.; Priya, P.; Devi, J. Effect of One Percent Chlorhexidine Addition on the Antibacterial Activity and Mechanical Properties of Sealants: An in vitro Study. Int. J. Clin. Pediatric. Dent. 2015, 8, 196–201. [Google Scholar] [CrossRef]
- Hamilton, M.; Otte, A.; Gregory, R.; Pinal, R.; Zandoná, A.; Bottino, M. Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 103. [Google Scholar] [CrossRef] [PubMed]
- Mahapoka, E.; Arirachakaran, P.; Watthanaphanit, A.; Rujiravanit, R.; Poolthong, S. Chitosan whiskers from shrimp shells incorporated into dimethacrylate-based dental resin sealant. Dent. Mater. J. 2012, 31, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Li, F.; Wu, D.; Ma, S.; Gao, J.; Li, Y.; Xiao, Y.; Chen, J. The Effect of an Antibacterial Monomer on the Antibacterial Activity and Mechanical Properties of a Pit-and-Fissure Sealant. J. Am. Dent. Assoc. 2011, 142, 184–193. [Google Scholar] [CrossRef]
- Kumar, M.; Mithun Pai, B.H.; Prashant, G.M.; Reddy, V.S.; Das, U.M.; Madura, C.; Chandu, G.N. Antibacterial Properties of Fluoride Releasing Glass lonomer Cements (GICs) and Pit and Fissure Sealants on Streptococcus Mutans. Int. J. Clin. Pediatr. Dent. 2010, 3, 93–96. [Google Scholar] [CrossRef]
- Naorungroj, S.; Wei, H.H.; Arnold, R.R.; Swift, E.J., Jr.; Walter, R. Antibacterial surface properties of fluoride-containing resin-based sealants. J. Dent. 2010, 38, 387–391. [Google Scholar] [CrossRef]
- Preetha, V.; Shashikiran, N.; Reddy, V. Comparison of antibacterial properties of two fluoride-releasing and a nonfluoride-releasing pit and fissure sealants. J. Indian Soc. Pedod. Prev. Dent. 2007, 25, 133–136. [Google Scholar] [CrossRef]
- Matalon, S.; Slutzky, H.; Mazor, Y.; Weiss, E. Surface antibacterial properties of fissure sealants. Pediatric Dent. 2003, 25, 43–48. [Google Scholar]
- Loyola-Rodriguez, J.; Garcia-Godoy, F. Antibacterial activity of fluoride release sealants on mutans streptococci. J. Clin. Pediatric Dent. 1996, 20, 109–111. [Google Scholar]
- Kreth, J.; Ferracane, J.L.; Pfeifer, C.S.; Khajotia, S.; Merritt, J. At the Interface of Materials and Microbiology: A Call for the Development of Standardized Approaches to Assay Biomaterial-Biofilm Interactions. J. Dent. Res. 2019, 98, 850–852. [Google Scholar] [CrossRef]
- Kreth, J.; Merritt, J.; Pfeifer, C.S.; Khajotia, S.; Ferracane, J.L. Interaction between the Oral Microbiome and Dental Composite Biomaterials: Where We Are and Where We Should Go. J. Dent. Res. 2020, 99, 1140–1149. [Google Scholar] [CrossRef]
- Wanted: A Base of Evidence. J. Endod. 2007, 33, 1401–1402. [CrossRef]
- Lin, N.J. Biofilm over teeth and restorations: What do we need to know? Dent. Mater. 2017, 33, 667–680. [Google Scholar] [CrossRef]
- Eriksson, L.; Lif Holgerson, P.; Esberg, A.; Johansson, I. Microbial Complexes and Caries in 17-Year-Olds with and without Streptococcus mutans. J. Dent. Res. 2018, 97, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Forssten, S.D.; Björklund, M.; Ouwehand, A.C. Streptococcus mutans, caries and simulation models. Nutrients 2010, 2, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.S.; Pan, P.C.; Kolenbrander, P.E. Effects of antimicrobial agents on oral biofilms in a saliva-conditioned flowcell. Biofilms 2004, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Rudney, J.D.; Chen, R.; Lenton, P.; Li, J.; Li, Y.; Jones, R.S.; Reilly, C.; Fok, A.S.; Aparicio, C. A reproducible oral microcosm biofilm model for testing dental materials. J. Appl. Microbiol. 2012, 113, 1540–1553. [Google Scholar] [CrossRef]
- Tenuta, L.M.A.; Cury, J.A. Fluoride: Its role in dentistry. Braz. Oral Res. 2010, 24, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, C.F.; Berger, S.B.; Cavalli, V.; Da, S.C.; Goncalves, R.B.; Ambrosano, G.; Giannini, M. In situ antimicrobial activity and inhibition of secondary caries of self-etching adhesives containing an antibacterial agent and/or fluoride. Am. J. Dent. 2015, 28, 167–173. [Google Scholar]
- Collares, F.M.; Portella, F.F.; Leitune, V.C.B.; Samuel, S.M.W. Discrepancies in degree of conversion measurements by FTIR. Braz. Oral Res. 2014, 28, 9–15. [Google Scholar]
- Par, M.; Spanovic, N.; Mohn, D.; Attin, T.; Tauböck, T.T.; Tarle, Z. Curing potential of experimental resin composites filled with bioactive glass: A comparison between Bis-EMA and UDMA based resin systems. Dent. Mater. 2020, 36, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Shortall, A. How light source and product shade influence cure depth for a contemporary composite. J. Oral Rehabil. 2005, 32, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Habib, E.; Wang, R.; Zhu, X. Correlation of resin viscosity and monomer conversion to filler particle size in dental composites. Dent. Mater. 2018, 34, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
Database: PubMed | |
#1 | (“fluoride” [tiab] OR “calcium” [tiab] OR “hydroxyapatite” [tiab] OR “remineral*” [tiab] OR “Preven*” [tiab] OR “Antimicrobial” [tiab] OR “antibacterial” [tiab] OR “biofilm” [tiab] OR “bioactiv*” [tiab]) |
#2 | (“Sealant*” [tiab] OR “Sealing*” [tiab] OR “Sealer” [tiab] OR “pit and fissure sealants” [Mesh]) |
#3 | #1 and #2 |
Database: Web of Knowledge | |
#1 | (antibacterial OR antimicrobial OR remineral* OR demineral* OR hydroxyapatite OR calcium* OR fluorid* OR bioactiv* OR Biofilm) |
#2 | (sealant* OR sealing* OR (pit AND fissure)) |
#3 | #1 and #2 |
Database: SCOPUS | |
#1 | (TITLE-ABS-KEY (sealant* OR sealing* OR (pit AND fissure))) |
#2 | (TITLE-ABS-KEY (antibacterial OR antimicrobial OR remineral* OR hydroxyapatite OR calcium* OR fluorid* OR bioactiv* OR biofilm*)) |
#3 | #1 and #2 |
Database: OVID (Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) 1946 to 1 June 2020) | |
#1 | (sealant or sealing or (pit and fissure sealant)).af |
#2 | (fluoride or calcium or hydroxyapatite or remineral* or antimicrobial or antibacterial or prevent or biofilm or bioactiv*).af. |
#3 | #1 and #2 |
Study | Sampling Bias | Assessment Bias | Reporting Bias | Funding Bias | Conflict Bias | Risk of Bias | ||||
---|---|---|---|---|---|---|---|---|---|---|
Sample Size Calculation | Sample Preparation | Blinding | Assessment Methods | Presence of Control Group | Definitive Values | Quantitative Analysis | ||||
Coco et al., 2020 [10] | + | − | + | − | − | + | − | − | − | Low |
Garcia et al., 2020 [11] | + | − | + | + | − | − | − | − | − | Low |
Ibrahim et al., 2020 [21] | + | − | + | − | − | + | − | − | + | Medium |
Monteiro et al., 2020 [12] | + | − | + | + | − | − | − | − | − | Low |
Ibrahim et al., 2019 [27] | + | − | + | − | − | + | − | − | + | Medium |
Swetha et al., 2019 [28] | + | − | + | + | − | − | − | − | − | Low |
Zmener et al., 2019 [29] | + | − | + | + | − | − | − | − | + | Medium |
Yu et al., 2016 [30] | + | − | + | − | − | + | − | − | + | Medium |
Rajabnia et al., 2016 [31] | + | − | + | + | − | − | − | − | − | Low |
Shanmugaavel et al., 2015 [32] | + | − | + | + | − | − | − | − | − | Low |
Hamilton et al., 2014 [33] | + | − | + | + | − | + | − | + | + | Medium |
Tran et al., 2013 [13] | + | − | + | − | − | + | − | − | + | Medium |
Mahapoka et al., 2012 [34] | + | − | + | − | − | − | − | − | + | Medium |
Feng Li et al., 2011 [35] | + | − | + | − | − | + | − | − | + | Medium |
Kumar et al., 2010 [36] | + | − | + | + | + | − | − | + | + | Medium |
Naorungroj et al., 2010 [37] | + | − | + | − | + * | − | − | + | + | Medium |
Menon et al., 2007 [38] | + | − | + | + | − | − | − | + | + | Medium |
Matalon et al., 2003 [39] | + | − | + | − | + * | − | − | + | + | Medium |
Loyola-Rodriguez et al., 1996 [40] | + | − | + | + | + ** | − | − | + | + | Medium |
Study | Group Sample Size | Sample Type or Measurements | Light Curing Time | Assessment Methods | Bacteria | Antibacterial Agents | Other Tests/Properties Assessed | Control Groups | Tested Groups |
---|---|---|---|---|---|---|---|---|---|
Cocco et al., 2020 [10] | 4 | Sealants were applied and polymerized on HA discs (1.25 cm in diameter) | - | CFU SEM pH | S. mutans S. oralis C. albicans | Zinc methacrylate (ZnM) di-nbutyldimethacrylate-tin (SnM) | DC Translucency parameter microshear bond strength FS Depth of cure Cytotoxicity assay | Resin Base = TEGDMA + BisGMA + glycerol dimethacrylate phosphate + Water +, phenylbis (2,4,6-tri-methylbenzoyl)-phosphine oxide + diphenyliodo- nium hexafluorophosphate + nanometric silica | Resin Base + 2.5% ZnM Resin Base + 5% ZnM Resin Base + 2.5% SnM Resin Base + 5% SnM |
Garcia et al., 2020 [11] | 3 | 4 mm diameter × 1 mm thickness | 30 s on each side | CFU (with or without aging for 50 days in distilled water) | S. mutans | [2(methacryloyloxy)ethyl] trimethylammonium chloride (METAC) | DC Softening in solvent Ultimate tensile strength Contact angle and SFE microshear bond strength and cytotoxicity evaluation (with and without aging for 50 days in distilled water at 37 °C.) | 60 wt % BisGMA + 40 wt % TEGDMA + 1 mol % CQ + 1 mol % 4E + 0 wt % METAC | 60 wt % BisGMA + 40 wt % TEGDMA + 1 mol % CQ + 1 mol % 4E+ 2.5 wt % METAC 60 wt % BisGMA + 40 wt % TEGDMA + 1 mol % CQ + 1 mol % 4E + 5 wt % METAC |
Ibrahim et al., 2020 [21] | Genomic profiling = 3 CLSM = 2 6 × 3 repetition (all other) | 9 mm diameter × 2 mm thickness | 60 s on each side | CFU Metabolic Activity (MTT) CLSM Lactic Acid Production Genomic Profiling of Saliva-Derived Biofilms | Pooled saliva from healthy high and low caries-risk pediatric patients | Dimethylaminohexadecyl methacrylate (DMAHDM) | - | 50% PEHB (44.5% PMGDM + 39.5% EBPADMA + 10% HEMA + 5% BisGMA + 1% BAPO) + 50% Glass | 45% PEHB + 50% Glass + 0% NACP + 5% DMAHDM 45% PEHB + 30% Glass + 20% NACP + 5% DMAHDM |
Monteiro et al., 2020 [12] | 3 | 4 mm diameter × 1 mm thickness | 30 s on each side | CFU | S. mutans | TAT | DC Softening Ultimate tensile strength (UTS) Contact angle and SFE | Resin Base = 50 wt % BisGMA + 50 wt % TEGDMA + 1 mol % CQ+4E + BHT 0.01% + Calcium Tungstate 30 wt % + 0.7 wt % Colloidal silica | Resin Base + 2 wt % α-TCP + 2 wt % TAT |
Ibrahim et al., 2019 [27] | 6 × 3 repetition | 9 mm diameter × 2 mm thickness | 60 s on each side | CFU Metabolic Activity (MTT) Polysaccharide Production CLSM Acid-Neutralizing Activity Lactic Acid Production | S. mutans | Dimethylaminohexdecyl methacrylate (DMAHDM) | - | Virtuoso Flowable Composite 50% PEHB (44.5% PMGDM + 39.5% EBPADMA + 10% HEMA + 5% BisGMA + 1% BAPO) + 50%Glass | 45% PEHB + 50% Glass + 0% NACP + 5% DMAHDM 50% PEHB + 30% Glass + 20% NACP + 0% DMAHDM 45% PEHB + 30% Glass + 20% NACP + 5% DMAHDM |
Swetha et al., 2019 [28] | 7 | Coating equal amount of sealant material on to the walls of eppendorf tubes | 40 s (7 cycles from the top to the bottom of the tube) | Direct Contact Test (CFU) | S. mutans L. acidophilus | Zinc Oxide (ZnO) and Calcium Fluoride (CaF2) nanoparticles (NPs) | compressive and flexural strengths | Plain fissure sealant (PFS) | PFS + 0.5 or 1 wt % ZnO PFS + 0.5 or 1 wt % CaF2 PFS + 0.5 or 1 wt % ZnO + 0.5 or 1 wt % CaF2 |
Zmener et al., 2019 [29] | 10 | Randomly assigned cleaned, sterilized, non-carries extracted human third molars without overfilling the pit and fissures | 20 s | Bacterial Leakage Testing (frequencies and median survival time) | Enterococcus faecalis | Modified calcium phosphate (MCP) | - | Embrace Wet Bonda (EWB) A commercially available P&F sealant Clinpro (CLPR) | EWB + MCP (EWBMCP) |
Yu et al., 2016 [30] | Metabolic Activity = 6 CFU = 5 | 8 mm diameter | 20 s | CFU Metabolic Activity (Cell Counting Kit-8) CLSM (All the tests with or without aging 6 months in distilled water) | S. mutans | 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB) | - | Eco-S Sealant Clinpro™ Sealant | Eco-S Sealant + 4 wt % MAE-DB |
Rajabnia et al., 2016 [31] | 3 | 200 μL of each sealant group was poured into 0.5 mL microtubes | 40 s | CFU | S. mutans | Chitosan | - | Clinpro + 0 wt % Chitosan | Clinpro + 1, 2, 3, 4 or 5 wt % Chitosan |
Shanmugaavel et al., 2015 [32] | 5 | 6 mm diameter | - | Inhibition Zone | S. mutans L. acidophilus | 20% chlorhexidine digluconate liquid (CHX) | Compressive strength (CS) diametrical tensile strength | Conventional glass ionomer sealants (GIS) (Fuji VII) Clinpro | GIS + 1% CHX Clinpro + 1% CHX |
Hamilton et al., 2014 [33] | 10 | 5 mm diameter × 2 mm thickness | 40 s | Inhibition Zone | S. mutans | Electrospun nylon-6 (N6) + Chitosan (CH) | Flexural strength Vickers microhardness | Helioseal Clear 0.12% Chlorhexidine (CHX) solution | Resin Base = 60% Bis-GMA + 40% TEGDMA + 0.5% CQ + 1% (Dimethylamino)ethyl methacrylate (DMAEMA) Resin Base + 1, 2.5 or 5 wt % N6 Resin Base + 1, 2.5 or 5 wt % CH |
Tran et al., 2013 [13] | 6 | 7 mm discs | - | CFU Inhibition Zone (above tests with or without aging 2 months in PBS) CLSM | S. mutans S. salivarius | Organo-selenium | - | Selenium-free sealant (BisGMA + TEGDMA + multifunctional monomer for methacrylate formation + CQ) | 0.1%, 0.2%, 0.25%, 0.5% or 1% Selenium-containing dental sealants (SeLECT-DefenseTM sealant) |
Mahapoka et al., 2012 [34] | 3 | 5 mm diameter × 2 mm thickness | 40 s | Inhibition Zone CFU | S. mutans | Freeze-dried chitosan Whiskers | DC Vickers hardness Depth of cure | Resin Base = 57 wt % Bis-GMA + 41.9 wt % TEGDMA + 0.86 wt % 2-dimethylaminoethyl methacrylate + 0.24 wt % CQ Delton Teethmate™F-1 Seal&Protect™ | Resin Base + 1 wt % or 1.5 wt % or 2 wt % or 2.5 wt % Chitosan |
Feng Li et al., 2011 [35] | 5 | 8 mm diameter | 20 s | CFU (with or without aging for 6 months in distilled water) OD | S. mutans | Methacryloxylethyl cetyl dimethyl ammonium chloride (DMAE-CB) | Contact angles Vickers microhardness DC Microleakage | Helioseal Helioseal F | Helioseal + 1 w% DMAE-CB |
Kumar et al., 2010 [36] | 10 | 5 mm diameter × 3 mm thickness | - | Inhibition Zone | S. mutans | Fluoride | - | - | Glass ionomer cement: Fuji IX GP Ketac molar Pit and fissure sealants: Teethmate-F1 Helioseal-F |
Naorungroj et al., 2010 [37] | inhibition zone = 4 OD = 9 | 6-mm sterile paper disks 6 mm diameter × 2 mm thickness obtained from labial surface of lower anterior bovine teeth | 20 s | Inhibition Zone (paper disk) Inhibition Zone (enamel disk) OD | S. mutans L. acidophilus | Fluoride | - | Blank disks | Clinpro Embrace WetBond UltraSeal XT plus |
Menon et al., 2007 [38] | 15 | 5 mm diameter | 20 s | Inhibition Zone | S. mutans L. acidophilus | Fluoride | - | Helioseal - | Teethmate-F1 Helioseal-F |
Matalon et al., 2003 [39] | 8 | 4 mm diameter | - | Inhibition Zone OD (with or without aging for 2 weeks and 1 month in PBS) | S. mutans | Fluoride | - | Blank wells | Helioseal F Ultraseal XT Conseal F Dyract Seal |
Loyola-Rodriguez et al., 1996 [40] | 3 | 3 mm diameter | - | Inhibition Zone | S. mutans MT8148, NG71 and GS5 (serotype c); S. mutans MT703R (serotype e); S. mutans OMZ175 (serotype f). S. sobrinus MT4532, MT6223 and 6715 (serotype g). | Fluoride | Fluoride release test | Helioseal | FluoroShieldTM Teethmate-FTM |
Antibacterial Effect | ||||
---|---|---|---|---|
Assessment Method | Study | Intervention (Mean ± SD) | Control (Mean ± SD) | Summary of Results |
CFU Counting | Cocco et al., 2020 [10] | - | - | Streptococcus mutans: CFU count for the sealant containing ZnM 5% showed significant reduction (40%) in comparison to control groups, while ZnM 2.5% did not show significant difference. Further reductions in the CFU of S. mutans were observed from both SnM 2.5% and 5% surfaces (70%) in comparison to control groups (p > 0.05). |
S. oralis and C. albicans: CFU count for the sealant containing SnM 5% showed a significant reduction in comparison to control groups (p > 0.05). | ||||
Garcia et al., 2020 [11] | Biofilm formation (log CFU/mL): | Biofilm formation (log CFU/mL): | There was significant difference between 2.5% or 5% METAC in comparison to control groups in immediate and long-term CFU count of the form biofilm and planktonic bacteria. There was no significant difference between the immediate and long-term CFU count for each group. | |
Immediate: | Immediate: | |||
2.5% METAC 5.05 (± 0.13) | 0% METAC 6.31 (± 0.10) | |||
5% METAC 4.93 (± 0.25) | Negative control (-) | |||
Long-term: | Long-term: | |||
2.5% METAC 4.98 (± 0.23) | 0% METAC 6.26 (± 0.19) | |||
5% METAC 5.02 (± 0.13) | Negative control (-) | |||
Planktonic bacteria: | Planktonic bacteria: | |||
Immediate: | Immediate: | |||
2.5% METAC 8.02 (± 0.14) | 0% METAC 9.00 (± 0.17) | |||
5% METAC 7.92 (± 0.21) | Negative Control 9.03 (± 0.06) | |||
Long-term: | Long-term: | |||
2.5% METAC 7.95 (± 0.27) | 0% METAC 9.05 (± 0.24) | |||
5% METAC 7.86 (± 0.15) | Negative control 9.03 (± 0.06) | |||
Ibrahim et al., 2020 [21] | - | - | Overall, the sealants containing 5% DMAHDM + 0% NACP showed significant reductions in CFU count for total microorganisms, total streptococci, lactobacilli and mutans streptococci in saliva-drived biofilm from both high and low caries-risk pediatric patients in comparison to the control (p < 0.05). However, the sealant containing DMAHDM + NACP showed less reduction in comparison to the sealant containing only DMAHDM (p < 0.05). | |
Monteiro et al., 2020 [12] | Biofilm (log CFU/mL) | Biofilm (log CFU/mL) | The sealant containing 2 wt % α-TCP + 2 wt % TAT showed a significant reduction in CFU counts in comparison to the control group (p < 0.05). | |
2 wt % α-TCP + 2 wt % TAT (4.95 ± 0.30) | 0 wt % α-TCP + 0 wt % TAT (6.38 ± 0.57) | |||
Negative control (-) | Negative control (-) | |||
Planktonic Bacteria (log CFU/mL) | Planktonic Bacteria (log CFU/mL) | |||
2 wt % α-TCP + 2 wt % TAT (7.73 ± 0.56) | 0 wt % α-TCP + 0 wt % TAT (9.21 ± 0.14) | |||
Negative control (-) | Negative control (9.14 ± 0.10) | |||
Ibrahim et al., 2019 [27] | - | - | The sealants containing 5% DMAHDM with or without NACP showed significant reductions in CFU count in comparison to the other sealants (p < 0.05). | |
Swetha et al., 2019 [28] | PFS + 0.5 wt % ZnO | Plain PFSs (Control) S. mutans (129.29 ± 26.552) L. acidophilus (53.07 ± 7.829) | CFU count of all experimental sealants showed statistically significant difference in comparison to control group (p < 0.001) | |
S. mutans (8.71 ± 5.894) | ||||
L. acidophilus (7.64 ± 1.909) | ||||
PFS + 0.5 wt % CaF2 | ||||
S. mutans (12.21 ± 2.612) | ||||
L. acidophilus (8.50 ± 4.223) | ||||
PFS + 0.5 wt % ZnO + 0.5 wt % CaF2 | ||||
S. mutans (1.50 ± 1.190) | ||||
L. acidophilus (2.43 ± 0.673) | ||||
PFS + 1 wt % ZnO | ||||
S. mutans (0.93 ± 0.976) | ||||
L. acidophilus (3.21 ± 1.113) | ||||
PFS + 1 wt % CaF2 | ||||
S. mutans (5.07 ± 2.244) | ||||
L. acidophilus (2.93 ± 0.886) | ||||
PFS + 1 wt % ZnO + 1 wt % CaF2 | ||||
S. mutans (0.57 ± 0.450) | ||||
L. acidophilus (0.64 ± 0.690) | ||||
Yu et al., 2016 [30] | Colony-forming units (CFU) counts from S. mutans biofilms on the material surfaces: | Clinpro™ Sealant | The sealant containing 4% MAE-DB showed a significant reduction in CFU count in comparison to the controls (p < 0.05). | |
Without aging (-) | Without aging (6.09 ± 0.54) × 108 | |||
With aging (-) | With aging (5.8 ± 0.66) × 108 | |||
Eco-S Sealant + 4 wt % MAE-DB | Eco-S Sealant | |||
Without aging (4.74 ± 0.97) × 106 | Without aging (6.43 ± 0.75) × 108 | |||
With aging (4.83 ± 1.16) × 106 | With aging (6.25 ± 0.66) × 108 | |||
Colony forming units (CFU) counts from S. mutans biofilms in the material eluents: | Clinpro™ Sealant | The sealant containing 4% MAE-DB showed no significant reduction in CFU count in comparison to the controls. | ||
Without aging (-) | Without aging (6.26 ± 0.46) × 108 | |||
With aging (-) | With aging (6.55 ± 0.44) ×108 | |||
Eco-S Sealant + 4 wt % MAE-DB | Eco-S Sealant | |||
Without aging (6.45 ± 0.61) × 108 | Without aging (6.79 ± 0.7) × 108 | |||
With aging (6.62 ± 0.47) × 108 | With aging (6.84 ± 0.53) × 108 | |||
Rajabnia et al., 2016 [31] | (CFU/mL) | (CFU/mL) 0 wt % chitosan(-) | The sealants containing 2, 3, 4 and 5% of CH showed a significant reduction in CFU count in 1 month in comparison to the control and 1% CH groups (p < 0.001). In general, there were significant differences between the groups (p < 0.001). | |
24 h | ||||
1 wt % chitosan (-) | ||||
2 wt % chitosan 2443.33 ± 51.316 | ||||
3 wt % chitosan 1440.00 ± 36.056 | ||||
4 wt % chitosan 871.67 ± 12.583 | ||||
5 wt % chitosan 599.33 ± 9.018 | ||||
48 h | ||||
1 wt % chitosan (-) | ||||
2 wt % chitosan 2523.33 ± 68.069 | ||||
3 wt % chitosan 1413.33 ± 32.146 | ||||
4 wt % chitosan 836.33 ± 6.506 | ||||
5 wt % chitosan 563.67 ± 12.342 | ||||
3 months | ||||
1 wt % chitosan (-) | ||||
2 wt % chitosan 2020.67 ± 20.33 | ||||
3 wt % chitosan 1373.33 ± 25.166 | ||||
4 wt % chitosan 782.00 ± 33.956 | ||||
5 wt % chitosan 361.67 ± 17.559 | ||||
Note: other timepoints were measured but not reported here. | ||||
Tran et al., 2013 [13] | CFU/sealant disc for S. salivarius | CFU/sealant disc for S. salivarius | The 1% Se containing sealant completely inhibited the growth of S. salivarius (p < 0.05) in comparison to the other groups. The 0.25%, 0.5% and 1% Se containing sealants completely inhibited the growth of S. mutans (p < 0.05) in comparison to the other groups, and 2 months aging in PBS 0.5% and 1% Se containing sealants completely inhibited the growth of S. mutans (p < 0.05) in comparison to the other groups. | |
0.1% selenium (-) | selenium-free sealant 4 × 104 | |||
1% selenium 0 | ||||
CFU/sealant disc for S. mutans | CFU/sealant disc for S. mutans | |||
0.2% selenium (-) | selenium-free sealant 2 × 105 | |||
0.25% selenium 0 | ||||
0.5% selenium 0 | ||||
1% selenium 0 | ||||
CFU/sealant disc for S. mutans after 2 months aging | CFU/sealant disc for S. mutans after 2 months aging | |||
0.2% selenium - | 0.2% selenium - | |||
0.5% selenium 0 | 0.5% selenium - | |||
1% selenium 0 | 1% selenium - | |||
Mahapoka et al., 2012 [34] | Bacterial reduction (%) | Bacterial reduction (%) | The 2%, 2.5% chitosan, Teethmate™ F-1 and Seal&Protect™ sealants showed a significantly higher bacterial reeducation rate in comparison to the other groups (p < 0.05). Seal&Protect showed the highest bacterial reeducation rate. | |
(BRR) = [(N1 − N2)/N1] × 100 | (BRR) = [(N1 − N2)/N1] × 100 | |||
Where N1 and N2 = viable count at 0 and 12 h. | Where N1 and N2 = viable count at 0 and 12 h. | |||
1% chitosan 31.2 (4.7) | Resin base 13.7 (2.9) | |||
1.5% chitosan 39.2 (3.7) | Delton® 25.9 (3.8) | |||
2% chitosan 72.2 (0.6) | Seal&Protect™ 83.1 (0.7) | |||
2.5% chitosan 75.9 (0.6) | Teethmate™ F-1 76.9 (0.3) | |||
Feng Li et al., 2011 [35] | - | - | The 1% DMAE-CB sealant showed a significant reduction in CFU count in comparison to the controls with or without aging (p < 0.05). There was no significant difference between the aged and non-aged samples in each group (p > 0.05). | |
Inhibition Zone | Shanmugaavel et al., 2015 [32] | Inhibition zone (mm) | Inhibition zone (mm) | The sealants containing 1% CHX showed significant increase in the inhibition zones against S. mutans and L. acidophilus at 0 day in comparison to the controls. These differences were still observed after 7 and 30 days but less pronounced (p < 0.05). |
S. mutans | S. mutans | |||
0 day | 0 day | |||
GIS + 1% CHX 10.36 mm | GIS 7.28 mm | |||
Clinpro + 1% CHX 14.82 | Clinpro 11.96 mm | |||
7 days | 7 days | |||
GIS + 1% CHX 5.7 mm | GIS 0 mm | |||
Clinpro + 1% CHX 8.68 | Clinpro 0 mm | |||
30 days | 30 days | |||
GIS + 1% CHX 1.67 mm | GIS 0 mm | |||
Clinpro + 1% CHX 5.83 mm | Clinpro 0 mm | |||
L. acidophilus | L. acidophilus | |||
0 day | 0 day | |||
GIS + 1% CHX 9.7 mm | GIS 4.16 mm | |||
Clinpro + 1% CHX 10.18 mm | Clinpro 4.4 mm | |||
7 days | 7 days | |||
GIS + 1% CHX 5.02 mm | GIS 0 mm | |||
Clinpro + 1% CHX 8.16 mm | Clinpro 0 mm | |||
30 days | 30 days | |||
GIS + 1% CHX 1.5 mm | GIS 0 mm | |||
Clinpro + 1% CHX 4.83 mm | Clinpro 0 mm | |||
Hamilton et al., 2014 [33] | - | - | The 0.12% CHX solution was the only group that showed an inhibition zone (4 mm) for S. mutans at 24, 48 and 120 h. There was no inhibition zone for all experimental groups. Only the positive control, that is, chlorhexidine 0.12% solution demonstrated an inhibition zone (4 mm) against S. mutans during the time of the study (24, 48 and 120 h). No inhibition zone was observed in any of the experimental groups tested (data not shown). | |
Tran et al., 2013 [13] | - | - | The 0.25% containing Se sealant completely inhibited the growth of s. mutans in comparison to the control. | |
Mahapoka et al., 2012 [34] | Width of inhibition zone (mm) | Width of inhibition zone (mm) | The 2%, 2.5% chitosan, Teethmate™ F-1 and Seal&Protect™ sealants showed a higher inhibition zone in comparison to the other groups. Seal&Protect showed the highest bacterial reeducation rate. | |
2.5% chitosan whisker (10.7 ± 0.3) | Control (5.0 ± 0) | |||
2% chitosan whisker (10.1 ± 0.2) | Delton® (5.0 ± 0) | |||
1.5% chitosan whisker (5.0 ± 0) | Seal&Protect™ (15.2 ± 0.2) | |||
1% chitosan whisker (5.0 ± 0) | Teethmate™ F-1 (11.4 ± 0.2) | |||
Kumar et al., 2010 [36] | Width of inhibition zone (mm) Ketac molar (2.18 ± 0.24) Fuji IX GP (5.50 ± 0.62) Teethmate-F1 (8.43 ± 0.42) Helioseal-F (0.00 ± 0.00) | - | The Teethmate-F1 sealant showed the largest inhibition zone while the Helioseal-F sealant showed no inhibition zone (p = 00). Seal&Protect showed the highest inhibition zone. | |
Naorungroj et al., 2010 [37] | Inhibition zone in mm (paper disk) L. acidophilus | Inhibition zone in mm (paper disk) L. acidophilus and S. mutans Control (0.0 ± 0.0) | The Clinpro sealant showed the largest inhibition zone against L. acidophilus. The Embrace sealant showed an inhibition zone against S. mutans using both paper and enamel disk (note: no p-value was given). | |
Clinpro (17.6 ± 2.8) | ||||
Embrace (6.0 ± 0.0) | ||||
UltraSeal (6.0 ± 0.0) | ||||
S. mutans | ||||
Clinpro (6.8 ± 0.5) | ||||
Embrace (7.9 ± 1.3) | ||||
UltraSeal (6.0 ± 0.0) | ||||
Inhibition zone in mm (enamel disk) L. acidophilus | Inhibition zone in mm (enamel disk) L. acidophilus and S. mutans Control (0.0 ± 0.0) | |||
Clinpro (9.8 ± 0.3) | ||||
Embrace < 6.0 | ||||
UltraSeal (6.0 ± 0.0) | ||||
S. mutans | ||||
Clinpro (6.0 ± 0.0) | ||||
Embrace (6.5 ± 0.0) | ||||
Menon et al., 2007 [38] | Inhibition zone in mm | Inhibition zone in mm | The Teethmate-F1 showed a significant difference in the inhibition zone between S. mutans and L. acidophilus. | |
S. mutans | S. mutans | |||
Teethmate-F1 (11.763 ± 0.391) | Helioseal 0 | |||
Helioseal-F 0 | - | |||
L. acidophilus | L. acidophilus | |||
Teethmate-F1 (13.583 ± 0.318) | Helioseal 0 | |||
Helioseal-F 0 | - | |||
Matalon et al., 2003 [30] | Inhibition zone in mm | - | The Dyract Seal sealant showed an inhibition zone while the other sealants did not show any inhibition zone. | |
Conseal F (0 ± 0) | ||||
Helioseal F (0 ± 0) | ||||
Ultraseal XT (0 ± 0) | ||||
Dyract Seal (6.62 ± 0.51) | ||||
Loyola-Rodriguez et al., 1996 [40] | Width of inhibition zone (mm) | Width of inhibition zone (mm) | The Teethmate-F sealant was the only material that showed an inhibition zone against all strains of S. mutans. | |
S. mutans | S. mutans | |||
MT8148 | MT8148 | |||
Teethmate-FTM (1.0 ± 0.0) | Helioseal (0 ± 0) | |||
FluoroShieldTM (0 ± 0) | - | |||
NG71 | NG71 | |||
Teethmate-FTM (1.0 ± 0.0) | Helioseal (0 ± 0) | |||
FluoroShieldTM (0 ± 0) | - | |||
GS5 | GS5 | |||
Teethmate-FTM (1.0 ± 0.0) | Helioseal (0 ± 0) | |||
FluoroShieldTM (0 ± 0) | ||||
MT703R | MT703R | |||
Teethmate-FTM (0.6 ± 0.3) | Helioseal (0 ± 0) | |||
FluoroShieldTM (0 ± 0) | - | |||
OMZ175 | OMZ175 | |||
Teethmate-FTM (0.6 ± 0.3) | Helioseal (0 ± 0) | |||
FluoroShieldTM (0 ± 0) | - | |||
S. sobrinus | S. sobrinus | |||
6715 | 6715 | |||
Teethmate-FTM (1.0 ± 0.3) | Helioseal (0 ± 0) | |||
FluoroShieldTM (0 ± 0) | - | |||
MT4532 | MT4532 | |||
Teethmate-FTM (0.6 ± 0.3) | Helioseal (0 ± 0) | |||
FluoroShieldTM (0 ± 0) | - | |||
MT6223 | MT6223 | |||
Teethmate-FTM (1.0 ± 0.0) | Helioseal (0 ± 0) | |||
FluoroShieldTM (0 ± 0) | - | |||
Optical Density | Feng Li et al., 2011 [35] | - | - | There were no significant differences between the groups (p > 0.05). |
Naorungroj et al., 2010 [37] | L. acidophilus suspensions exposed to pit and fissure sealants. | L. acidophilus suspensions exposed to pit and fissure sealants | No statistical analysis was mentioned in this study. | |
No wash | No wash | |||
Clinpro (0.075 ± 0.010) | Control (0.455 ± 0.019) | |||
Embrace (0.140 ± 0.029) | - | |||
UltraSeal (0.056 ± 0.002) | - | |||
30-min wash | 30-min wash | |||
Clinpro (0.075 ± 0.005) | Control (0.431 ± 0.014) | |||
Embrace (0.086 ± 0.005) | - | |||
UltraSeal (0.086 ± 0.003) | - | |||
24-h wash | 24-h wash | |||
Clinpro (0.077 ± 0.003) | Control (0.429 ± 0.017) | |||
Embrace (0.098 ± 0.029) | - | |||
UltraSeal (0.067 ± 0.005) | - | |||
48-h wash | 48-h wash | |||
Clinpro (0.103 ± 0.026) | Control (0.405 ± 0.012) | |||
Embrace (0.098 ± 0.065) | - | |||
UltraSeal (0.106 ± 0.026) | - | |||
S. mutans suspensions exposed to pit and fissure sealants. | S. mutans suspensions exposed to pit and fissure sealants | |||
No wash | No wash | |||
Clinpro (0.068 ± 0.007) | Control (0.441 ± 0.024) | |||
Embrace (0.117 ± 0.018) | - | |||
UltraSeal (0.051 ± 0.002) | - | |||
30-min wash | 30-min wash | |||
Clinpro (0.073 ± 0.005) | Control (0.557 ± 0.060) | |||
Embrace (0.088 ± 0.008) | - | |||
UltraSeal (0.066 ± 0.001) | - | |||
24-h wash | 24-h wash | |||
Clinpro (0.053 ± 0.003) | Control (0.423 ± 0.019) | |||
Embrace (0.054 ± 0.003) | - | |||
UltraSeal (0.341 ± 0.044) | - | |||
48-h wash | 48-h wash | |||
Clinpro (0.113 ± 0.028) | Control (0.398 ± 0.021) | |||
Embrace (0.054 ± 0.004) | - | |||
UltraSeal (0.433 ± 0.026) | - | |||
Matalon et al., 2003 [39] | Fresh material | Fresh material | The Dyract Seal showed the highest antibacterial affect in comparison to other groups; this difference was significant at 0 timepoint and for 2-week aged samples but not the 1-month aged samples (p < 0.0001). | |
Conseal F (2.659 ± 0.401) | Control (2.872 ± 0.4981) | |||
Helioseal F (1.859 ± 0.2288) | - | |||
Ultraseal XT (0.9250 ± 0.9547) | - | |||
Dyract Seal (0.07714 ± 0.1459) | - | |||
Aged two weeks | Aged two weeks | |||
Conseal F (2.915 ± 0.06325) | Control (3.165 ± 0.3695) | |||
Helioseal F (3.140 ± 0.1963) | - | |||
Ultraseal XT (2.327 ± 0.197) | - | |||
Dyract Seal (0.1025 ± 0.00276) | - | |||
Aged one month | Aged one month | |||
Conseal F (3.149 ± 0.307) | Control (2.888 ± 0.2604) | |||
Helioseal F (3.835 ± 0.1181) | - | |||
Ultraseal XT (2.914 ± 0.1369) | - | |||
Dyract Seal (2.880 ± 0.2658) | - | |||
Bacterial Leakage Testing | Zmener et al., 2019 [29] | Leakage frequency after 90 days (n) | Leakage frequency after 90 days (n) | For the leakage frequency there was no significant difference between EWBMCP and CLPR sealants (p > 0.05). However, both showed a significant difference in leakage frequency in comparison to EWB sealant (p< 0.05). The EWBMCP sealant showed a higher median survival time in comparison to the other sealants. |
EWBMCP 4 out of 10 | EWB 6 out of 9 | |||
- | CLPR 5 out of 10 | |||
Median survival time (absence of bacterial leakage) (days) | Median survival time (absence of bacterial leakage) (days) | |||
EWBMCP 85.3 | EWB 72.4 | |||
- | CLPR 80.7 | |||
Genomic Profiling | Ibrahim et al., 2020 [21] | - | - | The sealant containing DMAHDM + NACP showed reduction of the relative abundances of the 16S rRNA at the genus level of Streptococcus for both types of inoculum. |
Confocal Laser Scanning Microscopy (CLSM) | Ibrahim et al., 2020 [21] | - | - | The sealant containing DMAHDM + NACP showed substantial reduction in the formation, distribution and development of the biofilm in both high and low caries-risk pediatric patients in comparison to the control group. |
Ibrahim et al., 2019 [27] | - | - | The sealant containing 5% DMAHDM + 20% NACP showed reduction in visible biofilm biomass in comparison to the experimental control, which showed denser and thicker biofilm. | |
Yu et al., 2016 [30] | - | - | The sealant containing 4% MAE-DB showed lower density of cells and greater proportions of dead bacteria in comparison to the controls. | |
Tran et al., 2013 [13] | For S. mutans | For S. mutans | The 0.25% containing Se sealant did not show in growth in comparison to the control. | |
0.25% selenium | selenium-free sealant | |||
Biomass 0 | Biomass 315 μm3/μm2 | |||
average thickness 0 | average thickness 429 μm | |||
surface area 0 | surface area 47 × 106 μm2 | |||
Scanning Electron Microscopy (SEM) | Cocco et al., 2020 [10] | - | - | The SnM 5% containing sealant showed reduction in the biofilm total biomass with minimum amount of exopolysaccharides (EPS) in comparison to the control groups. |
Hamilton et al., 2014 [33] | - | - | There was not a significant difference between N6 and CH fiber diameter (p = 0.0601). |
Antibacterial Effect | ||||
---|---|---|---|---|
Assessment | Study | Intervention (Mean ± SD) | Control (Mean ± SD) | Summary of Results |
Metabolic Activity | Ibrahim et al., 2020 [21] | - | - | The sealants containing 5% DMAHDM + 0% NACP showed significant reductions in metabolic activity in saliva-derived biofilm from both high and low caries-risk pediatric patients in comparison to the control (p < 0.05). However, the sealant containing DMAHDM + NACP showed less reduction in comparison to the sealant containing only DMAHDM (p < 0.05). There was no significant difference in the same group regarding the type of the saliva inoculum (p > 0.05). |
Ibrahim et al., 2019 [27] | - | - | The sealants containing 5% DMAHDM with or without NACP showed significant reductions (82–87%) in metabolic activity in comparison to the other sealants (p < 0.05). | |
Yu et al., 2016 [30] | - | - | The sealant containing 4% MAE-DB showed significant reduction in metabolic activity in comparison to the controls before and after aging (p < 0.05). | |
Lactic Acid Production | Ibrahim et al., 2020 [21] | - | - | The sealant containing DMAHDM + NACP showed reduction of the relative abundances of the 16S rRNA at the genus level of Streptococcus for both types of inoculum. |
Ibrahim et al., 2019 [27] | - | - | The sealants containing 5% DMAHDM with or without NACP showed significant reduction in lactic acid production in comparison to the other sealants (p < 0.05). | |
pH | Coco et al., 2020 [10] | S. mutans | S. mutans | There was no significant difference between the pH of the biofilm cultured on the sealants containing 2.5% and 5% ZnM in comparison to the control group. There was a slight significant difference between 2.5% SnM and the control group The 5% SnM containing sealant kept the pH level close to the neutral. |
2.5% ZnM (4.6 ± 0.0) | Control (4.5 ± 0.0) | |||
5% ZnM (4.7 ± 0.1) | - | |||
2.5% SnM (5.4 ± 0.1) | - | |||
5% SnM (6.7 ± 1.0) | - | |||
S. oralis | S. oralis | |||
2.5% ZnM - | Control (5.7 ± 0.9) | |||
5% ZnM - | - | |||
2.5% SnM - | - | |||
5% SnM (6.5 ± 0.4) | - | |||
C. albicans | C. albicans | |||
2.5% ZnM - | Control (6.8 ± 0.1) | |||
5% ZnM - | - | |||
2.5% SnM - | - | |||
5% SnM (6.8 ± 0.1) | - | |||
S. mutansandC. albicans | S. mutansand C. albicans | |||
2.5% ZnM - | Control (4.4 ± 0.1) | |||
5% ZnM - | - | |||
2.5% SnM - | - | |||
5% SnM (6.6 ± 0.3) | - | |||
Ibrahim et al., 2019 [27] | - | - | There was a significant difference between the pH of the NACP-containing groups in comparison to the other groups at 8-h time point (p < 0.05). The NACP-containing groups kept the pH level close to neutral pH at all time points. | |
Poly-saccharide Production | Ibrahim et al., 2019 [27] | - | - | The sealants containing 5% DMAHDM with or without NACP showed significant reduction in polysaccharide production in comparison to the other sealants (p < 0.05). |
Acid Stress and Oxygen Stress Tolerance | Ibrahim et al., 2019 [27] | - | - | The sealants containing 5% DMAHDM showed a lower survival rate at 10 min (38–44%) in comparison to the control and NACP only groups (60–65%) after exposure to pH 2.8. There was no pronounced difference between the groups at the later time points. The sealants containing 5% DMAHDM showed a lower survival rate at 10 and 20 min but not at 30 and 45 min in comparison to the other groups after exposure to 0.2% H2O2. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlShahrani, S.S.; AlAbbas, M.S.; Garcia, I.M.; AlGhannam, M.I.; AlRuwaili, M.A.; Collares, F.M.; Ibrahim, M.S. The Antibacterial Effects of Resin-Based Dental Sealants: A Systematic Review of In Vitro Studies. Materials 2021, 14, 413. https://doi.org/10.3390/ma14020413
AlShahrani SS, AlAbbas MS, Garcia IM, AlGhannam MI, AlRuwaili MA, Collares FM, Ibrahim MS. The Antibacterial Effects of Resin-Based Dental Sealants: A Systematic Review of In Vitro Studies. Materials. 2021; 14(2):413. https://doi.org/10.3390/ma14020413
Chicago/Turabian StyleAlShahrani, Saad Saeed, Mana’a Saleh AlAbbas, Isadora Martini Garcia, Maha Ibrahim AlGhannam, Muath Abdulrahman AlRuwaili, Fabrício Mezzomo Collares, and Maria Salem Ibrahim. 2021. "The Antibacterial Effects of Resin-Based Dental Sealants: A Systematic Review of In Vitro Studies" Materials 14, no. 2: 413. https://doi.org/10.3390/ma14020413
APA StyleAlShahrani, S. S., AlAbbas, M. S., Garcia, I. M., AlGhannam, M. I., AlRuwaili, M. A., Collares, F. M., & Ibrahim, M. S. (2021). The Antibacterial Effects of Resin-Based Dental Sealants: A Systematic Review of In Vitro Studies. Materials, 14(2), 413. https://doi.org/10.3390/ma14020413