Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization
Abstract
:1. Introduction
2. Methods and Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wada, R.; Pearce, J.; Nakayama, T.; Matsumi, Y.; Hiyama, T.; Inoue, G.; Shibata, T. Observation of Carbon and Oxygen Isotopic Compositions of CO2 at an Urban Site in Nagoya Using Mid-IR Laser Absorption Spectroscopy. Atmos. Environ. 2011, 45, 1168–1174. [Google Scholar] [CrossRef]
- Walsh, B.M.; Lee, H.R.; Barnes, N.P. Mid-Infrared Lasers for Remote Sensing Applications. J. Lumin. 2016, 169, 400–405. [Google Scholar] [CrossRef]
- Duan, D.; Xia, Y. Pseudo Color Night Vision Correlated Imaging Without an Infrared Focal Plane Array. Opt. Express 2021, 29, 4978–4985. [Google Scholar] [CrossRef]
- Hecht, J. Photonic Frontiers: Laser Countermeasures: Scaling Down Mid-IR Laser Countermeasures for Smaller Aircraft. Laser Focus World 2014, 50, 31–38. [Google Scholar]
- Toor, F.; Jackson, S.; Shang, X.; Arafin, S.; Yang, H. Mid-Infrared Lasers for Medical Applications: Introduction to the Feature Issue. Biomed. Opt. Express 2018, 9, 6255–6257. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.; Evlyukhin, A.; Gonçalves, M.R.; Reinhardt, C.; Koroleva, A.; Arnedillo, M.L.; Kiyan, R.; Marti, O.; Chichkov, B. Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications. ACS Nano 2011, 5, 4843–4849. [Google Scholar] [CrossRef]
- Redding, B.; Choma, M.A.; Cao, H. Speckle-Free Laser Imaging Using Random Laser Illumination. Nat. Photonics 2012, 6, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Hwang, S.; Park, D.; Yu, T.J. Performance of Zoom Homogenizer to Control the Size of Illumination Field. Appl. Opt. 2019, 58, 2429–2437. [Google Scholar] [CrossRef]
- Pfadler, S.; Beyrau, F.; Löffler, M.; Leipertz, A. Application of a Beam Homogenizer to Planar Laser Diagnostics. Opt. Express 2006, 14, 10171–10180. [Google Scholar] [CrossRef] [PubMed]
- Fuse, K. Flattop Beam Generation and Multibeam Processing Using Aspheric and Diffractive Optics. J. Laser Micro/Nanoeng. 2010, 5, 156–162. [Google Scholar] [CrossRef]
- Zhu, G.; Zhu, X.; Zhu, C. Analytical Approach of Laser Beam Propagation in the Hollow Polygonal Light Pipe. Appl. Opt. 2013, 52, 5619–5630. [Google Scholar] [CrossRef] [PubMed]
- Adamow, A.; Sznitko, L.; Mysliwiec, J. The Influence of Homogenization Process on Lasing Performance in Polymer-Nematic Liquid Crystal Emulsions. Opt. Mater. 2017, 69, 81–86. [Google Scholar] [CrossRef]
- Jin, Y.; Hassan, A.; Jiang, Y. Freeform Microlens Array Homogenizer for Excimer Laser Beam Shaping. Opt. Express 2016, 24, 24846–24858. [Google Scholar] [CrossRef]
- Tan, D.; Wang, Z.; Xu, B.; Qiu, J. Photonic Circuits Written by Femtosecond Laser in Glass: Improved Fabrication and Recent Progress in Photonic Devices. Adv. Photonics 2021, 3, 024002. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Yu, L.; Chen, Q.-D.; Cao, L.; Bai, B.-F.; Sun, H.-B. Sapphire Concave Microlens Arrays for High-Fluence Pulsed Laser Homogenization. IEEE Photonic Technol. Lett. 2019, 31, 1615–1618. [Google Scholar] [CrossRef]
- Deng, Z.; Yang, Q.; Chen, F.; Meng, X.; Bian, H.; Yong, J.; Shan, C.; Hou, X. Fabrication of Large-Area Concave Microlens Array on Silicon by Femtosecond Laser Micromachining. Opt. Lett. 2015, 40, 1928–1931. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Fraser, S.; Hong, M.; Chhowalla, M.; Li, D.; Jia, B. Near-Perfect Microlenses Based on Graphene Microbubbles. Adv. Photonics 2020, 2, 055001. [Google Scholar] [CrossRef]
- Wang, Z.Y. Near-Infrared Organic Materials and Emerging Applications; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Li, L.; Lin, H.; Qiao, S.; Zou, Y.; Danto, S.; Richardson, K.; Musgraves, J.D.; Lu, N.; Hu, J. Integrated Flexible Chalcogenide Glass Photonic Devices. Nat. Photonics 2014, 8, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Ha, S.; Lee, H.; Bae, J.; Jang, B.; Kwon, H.-J.; Yun, Y.; Lee, S.; Jang, J. High-Detectivity Flexible Near-Infrared Photodetector Based on Chalcogenide Ag2Se Nanoparticles. Adv. Opt. Mater. 2019, 7, 1900812. [Google Scholar] [CrossRef]
- Yuan, X.C.L.; Zayats, A. Laser: Sixty years of advancement. Adv. Photonics 2020, 2, 050101. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, Q.; Bian, H.; Li, M.; Hou, X.; Chen, F. Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays Via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes. Materials 2020, 13, 3490. [Google Scholar] [CrossRef] [PubMed]
- Kadan, V.; Blonskyi, I.; Shynkarenko, Y.; Rybak, A.; Calvez, L.; Mytsyk, B.; Spotyuk, O. Single-Pulse Femtosecond Laser Fabrication of Concave Microlens- and Micromirror Arrays in Chalcohalide Glass. Opt. Laser Technol. 2017, 96, 283–289. [Google Scholar] [CrossRef]
- Bernier, M.; Fortin, V.; Caron, N.; El-Amraoui, M.; Messaddeq, Y.; Vallée, R. Mid-Infrared Chalcogenide Glass Raman Fiber Laser. Opt. Lett. 2013, 38, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Song, Y.; Huang, Y.; Kita, D.; Deckoff-Jones, S.; Wang, K.; Li, L.; Li, J.; Zheng, H.; Luo, Z.; et al. Chalcogenide Glass-on-Graphene Photonics. Nat. Photonics 2017, 11, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Abdollahramezani, S.; Hemmatyar, O.; Taghinejad, H.; Krasnok, A.; Kiarashinejad, Y.; Zandehshahvar, M.; Alù, A.; Adibi, A. Tunable Nanophotonics Enabled by Chalcogenide Phase-Change Materials. Nanophotonics 2020, 9, 1189–1241. [Google Scholar] [CrossRef]
- Nagato, K.; Yajima, Y.; Nakao, M. Laser-Assisted Thermal Imprinting of Microlens Arrays—Effects of Pressing Pressure and Pattern Size. Materials 2019, 12, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhou, W.; Naples, N.J.; Yi, A.Y. Fabrication of an Infrared Shack-Hartmann Sensor by Combining High-Speed Single-Point Diamond Milling and Precision Compression Molding Processes. Appl. Opt. 2018, 57, 3598–3605. [Google Scholar] [CrossRef]
- Sun, Z.; To, S.; Yu, K.M. One-Step Generation of Hybrid Micro-Optics with High-Frequency Diffractive Structures on Infrared Materials by Ultra-Precision Side Milling. Opt. Express 2018, 26, 28161–28177. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Bai, B.-F.; Chen, Q.-D.; Sun, H.-B. Etching-Assisted Femtosecond Laser Modification of Hard Materials. Opto-Electron. Adv. 2019, 2, 09190021. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Sugioka, K. Hierarchical Microstructures with High Spatial Frequency Laser Induced Periodic Surface Structures Possessing Different Orientations Created by Femtosecond Laser Ablation of Silicon in Liquids. Opto-Electron. Adv. 2019, 2, 190002. [Google Scholar] [CrossRef] [Green Version]
- Cha, D.H.; Kim, H.-J.; Hwang, Y.; Jeong, J.C.; Kim, J.-H. Fabrication of Molded Chalcogenide-Glass Lens for Thermal Imaging Applications. Appl. Opt. 2012, 51, 5649–5656. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Bian, H.; Zhang, F.; Yang, Q.; Shan, C.; Li, M.; Hou, X.; Chen, F. IR Artificial Compound Eye. Adv. Opt. Mater. 2020, 8, 901767. [Google Scholar] [CrossRef]
- Chen, F.; Deng, Z.; Yang, Q.; Bian, H.; Du, G.; Si, J.; Hou, X. Rapid Fabrication of a Large-area Close-packed Quasi-periodic Microlens Array on BK7 Glass. Opt. Lett. 2014, 39, 606–609. [Google Scholar] [CrossRef] [PubMed]
Physical Properties | Value |
---|---|
Thermal conductivity (Wm−1K−1) | 0.23 |
Thermal expansion coefficient (K−1) | 1.41 × 10−5 |
Transition temperature (Tg) (°C) | 284 |
Refractive index at 10 μm | 2.59609 (25 °C), 2.58928 (80 °C) |
Thermo-optic coefficient at 10 μm (K−1) | 5.8 × 10−5 |
Young’s modulus (GPa) | 19.11 |
Stage | Heating | Pressing | Slow Cooling | Rapid Cooling |
---|---|---|---|---|
Temperature (°C) | 340 | 340 | 200 | 20 |
Pressing force (kPa) | — | 50 | 50 | — |
Process time (min) | 40 | 10 | 70 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Yang, Q.; Bian, H.; Wang, S.; Li, M.; Hou, X.; Chen, F. Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization. Materials 2021, 14, 5952. https://doi.org/10.3390/ma14205952
Zhang F, Yang Q, Bian H, Wang S, Li M, Hou X, Chen F. Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization. Materials. 2021; 14(20):5952. https://doi.org/10.3390/ma14205952
Chicago/Turabian StyleZhang, Fan, Qing Yang, Hao Bian, Shaokun Wang, Minjing Li, Xun Hou, and Feng Chen. 2021. "Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization" Materials 14, no. 20: 5952. https://doi.org/10.3390/ma14205952
APA StyleZhang, F., Yang, Q., Bian, H., Wang, S., Li, M., Hou, X., & Chen, F. (2021). Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization. Materials, 14(20), 5952. https://doi.org/10.3390/ma14205952