Applicability Assessment of Different Materials for Standards Ensuring Comparability of Optical and Tactile Coordinate Measurements
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- The biggest CTE for materials of which the spheres were manufactured is 5 × 10−6 K−1. Maximum temperature changes that may happen in laboratories with thermal stability described above are 1 °C. Diameter of the spheres is 10 mm. For this input data, maximum temperature influence on sphere diameter can be given by Equation (1):
- (2)
- Differences in CTE of different spheres is 0.4 × 10−6 K−1, so the temperature influences them in similar way. All spheres were measured one by one with very short breaks between different spheres. In that short time, changes in temperature values were slight and all spheres were measured in comparable thermal conditions.
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christoph, R.; Neumann, H.J. Multisensor-Koordinatenmesstechnik; Süddeutscher Verlag: Munich, Germany, 2013. [Google Scholar]
- Hofmann, D. Vorlesung Optische Koordinatenmesstechnik. Qualitätssicherung und Qualitätsmesstechnik; Steinbeis Transferzentrum: Gosheim, Germany, 2011. [Google Scholar]
- Harding, K. Handbook of Optical Dimensional Metrology; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Weckenmann, A.; Kraemer, P.; Hoffmann, J. Manufacturing Metrology—State of the art and prospects. In Proceedings of the 9th IMEKO TC14: International Symposium on Measurement and Quality Control (9th ISMQC), Chennai, India, 21–24 November 2007. [Google Scholar]
- Ellis, J.D.; Haitjema, H.; Jiang, X.; Joo, K.-N.; Leach, R. Advances in optical metrology and instrumentation: Introduction. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2019, 37, OMI1–OMI2. [Google Scholar] [CrossRef] [PubMed]
- Schwenke, H.; Neuschaefer-Rube, U.; Pfeifer, T.; Kunzmann, H. Optical methods for dimensional metrology in production engineering. CIRP Ann. Manuf. Technol. 2002, 51, 685–699. [Google Scholar] [CrossRef]
- Larue, J.-F.; Brown, D.; Viala, M. How optical CMMs and 3D scanning will revolutionize the 3D metrology world. Adv. Comput. Vis. Pattern Recognit. 2015, 48, 141–176. [Google Scholar]
- Heidari Bateni, S.; Christoph, R. Development of coordinate metrology with optical sensors computed tomography and multisensor systems. TM Tech. Mess. 2019, 86, 464–468. [Google Scholar] [CrossRef]
- Chao, Z.; Ong, S.; Tan, S. Improvement of measuring accuracy of an optical CMM. Phys. Procedia 2011, 19, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Hocken, R.; Pereira, P. Coordinate Measuring Machines and Systems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Gąska, A.; Krawczyk, M.; Kupiec, R.; Ostrowska, K.; Gąska, P.; Sładek, J. Modeling of the residual kinematic errors of coordinate measuring machines using LaserTracer system. Int. J. Adv. Manuf. 2014, 73, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Schwenke, H.; Knapp, W.; Haitjema, H.; Weckenmann, A.; Schmitt, R.; Delbressine, F. Geometric error measurement and compensation of machines—An update. CIRP Ann. Manuf. Technol. 2008, 57, 660–675. [Google Scholar] [CrossRef]
- Weckenmann, A.; Estler, T.; Peggs, G.; McMurtry, D. Probing Systems in Dimensional Metrology. CIRP Ann. Manuf. Technol. 2004, 53, 657–684. [Google Scholar] [CrossRef]
- Woźniak, A.; Dobosz, M. Metrological feasibilities of CMM touch trigger probes. Part I: 3D theoretical model of probe pretravel. Meas 2003, 34, 273–286. [Google Scholar] [CrossRef]
- Skibicki, J.; Golijanek-Jędrzejczyk, A.; Dzwonkowski, A. The influence of camera and optical system parameters on the uncertainty of object location measurement in vision systems. Sensors 2020, 20, 5433. [Google Scholar] [CrossRef]
- Bernstein, J.; Weckenmann, A. Measurement uncertainty evaluation of opticalmulti-sensor-measurements. Meas 2012, 45, 2309–2320. [Google Scholar] [CrossRef]
- Carmignato, S.; Voltan, A.; Savio, E. Quantification of uncertainty contributors in coordinate measurements using video probes. In Proceedings of the 7th International Conference European Society for Precision Engineering and Nanotechnology, Bremen, Germany, 20–24 May 2007. [Google Scholar]
- Carmignato, S.; Voltan, A.; Savio, E. Metrological performance of optical coordinate measuring machines under industrial conditions. CIRP Ann. Manuf. Technol. 2010, 59, 497–500. [Google Scholar] [CrossRef]
- Carmignato, S.; De Chiffre, L.; Bosse, H.; Leach, R.; Balsamo, A.; Estler, W. Dimensional artefacts to achieve metrological traceability in advanced manufacturing. CIRP Ann. Manuf. Technol. 2020, 69, 693–716. [Google Scholar] [CrossRef]
- Kefernstein, C.; Marxer, M.; Gotti, R.; Thalmann, R.; Jordi, T.; Andras, M.; Becker, J. Universal high precision reference sphere for multisensory coordinate measuring machines. CIRP Ann. Manuf. Technol. 2012, 61, 487–490. [Google Scholar] [CrossRef]
- Woźniak, A.; Dobosz, M. Influence of measured objects parameters on CMM touch trigger probe accuracy of probing. Precis. Eng. 2005, 29, 290–297. [Google Scholar] [CrossRef]
- Carmignato, S.; Savio, E. Metrological Performance Verification of Coordinate Measuring Systems with Optical Distance Sensors. Int. J. Precis. Technol. 2011, 2, 153–171. [Google Scholar] [CrossRef]
- Sato, O.; Osawa, S.; Takatsuji, T.; Murakami, M.; Harada, R. Test Artefacts for the Verification of Optical Digitizers. Key Eng. Mater. 2008, 381–382, 553–556. [Google Scholar] [CrossRef]
- De Chiffre, L.; Hansen, H.; Morace, R. Comparison of Coordinate Measuring Machines using an Optomechanical Hole Plate. CIRP Ann. Manuf. Technol. 2005, 54, 479–482. [Google Scholar] [CrossRef]
- ISO 15530-3:2011; Geometrical Product Specifications (GPS)—Coordinate Measuring Machines (CMM): Technique for Determining the Uncertainty of Measurement—Part 3: Use of Calibrated Workpieces or Measurement Standards. ISO: Geneva, Switzerland, 2011.
Material | Alumina | TOPIC White | TOPIC Black |
---|---|---|---|
Deviation of nominal dimension | ±0.1 mm | ±0.1 mm | ±0.1 mm |
Measurement uncertainty | 0.3 µm | 0.3 µm | 0.3 µm |
Roundness | <0.13 µm | <0.5 µm | <0.2 µm |
Roundness uncertainty | 0.04 µm | 0.04 µm | 0.04 µm |
Coefficient of thermal expansion | 4.6 × 10−6 K−1 | 5 × 10−6 K−1 | 5 × 10−6 K−1 |
Hardness | 2100 HV | 1000 HV | 1800 HV |
Recommended measurement method | tactile | optical | optical and tactile |
CMM | Measuring Range, mm | EE0,MPE, µm | Sensors | Size MPE, µm | Form MPE, µm |
---|---|---|---|---|---|
Multisensor Werth VideoCheck HA | 600 × 600 × 350 | 0.5 + L/600 | Video probe | 1.5 | 1.3 |
Leitz Reference HP | 1000 × 700 × 600 | 0.7 + L/400 | Tactile measuring head | 0.5 | 0.5 |
Multisensor Zeiss O-Inspect 442 | 400 × 400 × 200 | 1.9 + L/250 | Tactile measuring head | 1.9 | 1.9 |
Video probe | 1.9 | 1.4 | |||
Chromatic white light sensor | 2.0 | 2.0 | |||
Leitz PMM 12106 | 1200 × 1000 × 600 | 0.8 + L/400 | Tactile measuring head | 0.8 | 0.6 |
Standard Sphere | Operation Mode | Parameter | x | y | z |
---|---|---|---|---|---|
Alumina | Optic | mean, mm | 0.0040 | 0.0016 | −0.0001 |
standard deviation, mm | 0.0018 | 0.0005 | 0.0000 | ||
Tactile | mean, mm | 0.0000 | 0.0001 | −0.0014 | |
standard deviation, mm | 0.0001 | 0.0001 | 0.0028 | ||
WLS | mean, mm | −0.0041 | 0.0015 | 0.0030 | |
standard deviation, mm | 0.0008 | 0.0007 | 0.0031 | ||
Topic white | Optic | mean, mm | 0.0028 | 0.0013 | −0.0001 |
standard deviation, mm | 0.0014 | 0.0004 | 0.0000 | ||
Tactile | mean, mm | 0.0000 | 0.0001 | −0.0012 | |
standard deviation, mm | 0.0001 | 0.0000 | 0.0016 | ||
WLS | mean, mm | −0.0046 | 0.0018 | −0.0006 | |
standard deviation, mm | 0.0001 | 0.0001 | 0.0005 | ||
Topic black | Optic | mean, mm | 0.0064 | 0.0171 | 0.0000 |
standard deviation, mm | 0.0139 | 0.0092 | 0.0001 | ||
Tactile | mean, mm | −0.0001 | 0.0003 | −0.0002 | |
standard deviation, mm | 0.0001 | 0.0001 | 0.0021 | ||
WLS | mean, mm | −0.0047 | 0.0014 | 0.0013 | |
standard deviation, mm | 0.0003 | 0.0002 | 0.0006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harmatys, W.; Gąska, P.; Gąska, A.; Gruza, M.; Jedynak, M.; Kobiela, K.; Marxer, M. Applicability Assessment of Different Materials for Standards Ensuring Comparability of Optical and Tactile Coordinate Measurements. Materials 2022, 15, 4128. https://doi.org/10.3390/ma15124128
Harmatys W, Gąska P, Gąska A, Gruza M, Jedynak M, Kobiela K, Marxer M. Applicability Assessment of Different Materials for Standards Ensuring Comparability of Optical and Tactile Coordinate Measurements. Materials. 2022; 15(12):4128. https://doi.org/10.3390/ma15124128
Chicago/Turabian StyleHarmatys, Wiktor, Piotr Gąska, Adam Gąska, Maciej Gruza, Michał Jedynak, Konrad Kobiela, and Michael Marxer. 2022. "Applicability Assessment of Different Materials for Standards Ensuring Comparability of Optical and Tactile Coordinate Measurements" Materials 15, no. 12: 4128. https://doi.org/10.3390/ma15124128
APA StyleHarmatys, W., Gąska, P., Gąska, A., Gruza, M., Jedynak, M., Kobiela, K., & Marxer, M. (2022). Applicability Assessment of Different Materials for Standards Ensuring Comparability of Optical and Tactile Coordinate Measurements. Materials, 15(12), 4128. https://doi.org/10.3390/ma15124128