In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Sample Preparation
2.2. Material Characterization
2.3. Thermal Cycling Test
3. Results and Discussion
3.1. Mechanical Strength and Thermal Conductivity of CPCMs
3.2. Chemical Compatibility and Microstructures of CPCMs
3.3. Thermophysical Properties of the Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Wu, J.; Jenkins, N. Combined analysis of electricity and heat networks. Appl. Energy 2016, 162, 1238–1250. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Xie, X.; Li, X.; Lin, X. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material. Appl. Energy 2016, 178, 616–623. [Google Scholar] [CrossRef]
- Qiu, Z.; Ma, X.; Zhao, X.; Wright, A. Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications. Renew. Sustain. Energy Rev. 2017, 77, 246–262. [Google Scholar] [CrossRef]
- Cunha Da, J.-P.; Eames, P. Thermal energy storage for low and medium temperature applications using phase change materials–a review. Appl. Energy 2016, 177, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Nkhonjera, L.; Bello-Ochende, T.; John, G.; King’ondu, C.-K. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renew. Sustain. Energy Rev. 2017, 75, 157–167. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, X.; Ma, Z.W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement. Appl. Energy 2016, 165, 472–510. [Google Scholar] [CrossRef]
- Nomura, T.; Akiyama, T. High-temperature latent heat storage technology to utilize exergy of solar heat and industrial exhaust heat. Int. J. Energy Res. 2017, 41, 240–251. [Google Scholar] [CrossRef]
- Nomura, T.; Sheng, N.; Zhu, C.; Saito, G.; Hanzaki, D.; Hiraki, T. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Appl. Energy 2017, 188, 9–18. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Wen, R.-L.; Tang, C.; Wu, B.-G.; Huang, Z.-H.; Min, X.; Huang, Y.-T.; Liu, Y.-G.; Fang, M.-H.; Wu, X.-W. Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application. Energy Build 2016, 130, 113–121. [Google Scholar] [CrossRef]
- Qureshi, Z.-A.; Ali, H.-M.; Khushnood, S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review. Int. J. Heat Mass Transf. 2018, 127, 838–856. [Google Scholar] [CrossRef]
- Ge, Z.-W.; Li, Y.-L.; Li, D.-C.; Sun, Z.; Jin, Y.; Liu, C.-P. Thermal energy storage: Challenges and the role of particle technology. Particuology 2014, 15, 2–8. [Google Scholar] [CrossRef]
- Krasna, M.; Klemencic, E.; Kutnjak, Z.; Kralj, S. Phase-changing materials for thermal stabilization and thermal transport. Energy 2018, 162, 54–63. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Ren, N.; Wang, T.; Ma, C.-F. Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant. Sol. Energy 2011, 85, 1957–1966. [Google Scholar] [CrossRef]
- Han, D.; Lougou, B.-G.; Xu, Y.-T.; Shuai, Y.; Huang, X. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage. Appl. Energy 2020, 264, 114674. [Google Scholar] [CrossRef]
- Wang, H.-R.; Ran, X.-F.; Zhong, Y.J.; Lu, L.-Y.; Lin, J.; He, G.; Wang, L.; Dai, Z.-M. Ternary chloride salt–porous ceramic composite as a high-temperature phase change material. Energy 2022, 238, 121838. [Google Scholar] [CrossRef]
- Giovanni, S.-S.; Valerio, T.; Anna, C.-T.; Raffaele, L.; Emiliana, M.; Annarita, S.; Natale, C.; Mauro, C.; Tiziano, D.; Anna, D.-L. High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants. Energies 2021, 14, 5339. [Google Scholar]
- Gil, A.; Peiró, G.; Oró, E.; Cabeza, L.F. Experimental analysis of the effective thermal conductivity enhancement of PCM using finned tubes in high temperature bulk tanks. Appl. Therm. Eng. 2018, 142, 736–744. [Google Scholar] [CrossRef]
- Gimenez-Gavarrell, P.; Fereres, S. Glass encapsulated phase change materials for high temperature thermal energy storage. Renew. Energy 2017, 107, 497–507. [Google Scholar] [CrossRef]
- Awad, A.; Navarro, H.; Ding, Y.-L.; Wen, D.-S. Thermal-physical properties of nanoparticle-seeded nitrate molten salts. Renew. Energy 2018, 120, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Miliozzi, A.; Chieruzzi, M.; Torre, L. Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material. Appl. Energy 2019, 250, 1023–1035. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Wang, K.-C.; Ye, F.; Ren, Y.-X.; Xu, C. Characterization and thermal properties of a shape-stable Na2CO3-K2CO3/coal fly ash/expanded graphite composite phase change materials for high-temperature thermal energy storage. J. Energy Storage 2021, 33, 102123. [Google Scholar] [CrossRef]
- Sang, L.; Li, F.; Xu, Y. Form-stable ternary carbonates/MgO composite material for high temperature thermal energy storage. Sol. Energy 2019, 180, 1–7. [Google Scholar] [CrossRef]
- Ye, F.; Ge, Z.-W.; Ding, Y.-L.; Yang, J. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage. Particuology 2013, 15, 56–60. [Google Scholar] [CrossRef]
- Ge, Z.-W.; Ye, F.; Cao, H.; Leng, G.-H.; Qin, Y.; Ding, Y.-L. Carbonatesalt-based composite materials for medium and high temperature thermal energy storage. Particuology 2014, 15, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, Q.; Lin, C.; Feng, J.; Zhao, Y.-Q.; Liu, C.-P.; Xiong, Y.-X.; Chang, C.; Ding, Y.-L. MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properties. Appl. Energy 2019, 250, 81–91. [Google Scholar] [CrossRef]
- Pincemin, S.; Olives, R.; Py, X.; Christ, M. Highly conductive composites made of phase change materials and graphite for thermal storage. Sol. Energy Mater. Sol. Cells 2008, 92, 603–613. [Google Scholar] [CrossRef]
Name | ρ (g/cm3) | P (MPa) | K (W/m·K) |
---|---|---|---|
15CPCMs | 1.86 | 30.2 | 4.928 |
20CPCMs | 1.73 | 26.3 | 4.149 |
Contrast sample | 1.69 | 18.5 | 4.465 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Liu, Y.; Ye, W.; Wang, Q.; Yang, X.; Yang, D. In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage. Materials 2021, 14, 6032. https://doi.org/10.3390/ma14206032
Yang B, Liu Y, Ye W, Wang Q, Yang X, Yang D. In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage. Materials. 2021; 14(20):6032. https://doi.org/10.3390/ma14206032
Chicago/Turabian StyleYang, Bo, Yang Liu, Wenjie Ye, Qiyang Wang, Xiao Yang, and Dongmei Yang. 2021. "In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage" Materials 14, no. 20: 6032. https://doi.org/10.3390/ma14206032
APA StyleYang, B., Liu, Y., Ye, W., Wang, Q., Yang, X., & Yang, D. (2021). In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage. Materials, 14(20), 6032. https://doi.org/10.3390/ma14206032