Electronic Waste Low-Temperature Processing: An Alternative Thermochemical Pretreatment to Improve Component Separation
Abstract
:1. Introduction and Literature Review
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of WEEE Samples
3.2. Thermal Processing of WEEE Samples
3.3. Characterization of the Thermal Processing Products
4. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Margallo, M.; Ziegler, K.; Vázquez-Rowe, I.; Aldaco, R.; Irabien, A.; Kahhat, R. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Sci. Total Environ. 2019, 689, 1255–1275. [Google Scholar] [CrossRef]
- Zorpas, A.A. Strategy development in the framework of waste management. Sci. Total Environ. 2020, 716, 137088. [Google Scholar] [CrossRef]
- Van Fan, Y.; Klemeš, J.J.; Walmsley, T.; Bertók, B. Implementing circular economy in municipal solid waste treatment system using P-graph. Sci. Total Environ. 2020, 701, 134652. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, K.-H.; Uchimiya, M.; Kwon, E.E.; Jeon, B.-H.; Deep, A.; Yun, S.-T. Global demand for rare earth resources and strategies for green mining. Environ. Res. 2016, 150, 182–190. [Google Scholar] [CrossRef]
- Tansel, B. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environ. Int. 2017, 98, 35–45. [Google Scholar] [CrossRef]
- Xiao, S.; Dong, H.; Geng, Y.; Brander, M. An overview of China’s recyclable waste recycling and recommendations for integrated solutions. Resour. Conserv. Recycl. 2018, 134, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Breukelman, H.; Krikke, H.; Löhr, A. Failing services on urban waste management in developing countries: A review on symptoms, diagnoses, and interventions. Sustainability 2019, 11, 6977. [Google Scholar] [CrossRef] [Green Version]
- Widmer, R.; Oswald-Krapf, H.; Sinha-Khetriwal, D.; Schnellmann, M.; Böni, H. Global perspectives on e-waste. Environ. Impact Assess. Rev. 2005, 25, 436–458. [Google Scholar] [CrossRef]
- Kaya, M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag. 2016, 57, 64–90. [Google Scholar] [CrossRef] [PubMed]
- Sahajwalla, V.; Gaikwad, V. The present and future of e-waste plastics recycling. Curr. Opin. Green Sustain. Chem. 2018, 13, 102–107. [Google Scholar] [CrossRef]
- Abu Bakar, M.S.; Rahimifard, S. Ecological and economical assessment of end-of-life waste recycling in the electrical and electronic recovery sector. Int. J. Sustain. Eng. 2008, 1, 261–277. [Google Scholar] [CrossRef]
- Parajuly, K.; Fitzpatrick, C. Understanding the impacts of transboundary waste shipment policies: The case of plastic and electronic waste. Sustainability 2020, 12, 2412. [Google Scholar] [CrossRef] [Green Version]
- Hsu, E.; Barmak, K.; West, A.C.; Park, A.-H.A. Advancements in the treatment and processing of electronic waste with sustainability: A review of metal extraction and recovery technologies. Green Chem. 2019, 21, 919–936. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 2016, 127, 19–36. [Google Scholar] [CrossRef]
- Isildar, A.; Rene, E.R.; van Hullebusch, E.D.; Lens, P.N.L. Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resour. Conserv. Recycl. 2018, 135, 296–312. [Google Scholar] [CrossRef]
- Bakhiyi, B.; Gravel, S.; Ceballos, D.; Flynn, M.A.; Zayed, J. Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges. Environ. Int. 2018, 110, 173–192. [Google Scholar] [CrossRef]
- Kuehr, R. Waste electrical and electronic equipment. In Waste—A Handbook for Management, 2nd ed.; Letcher, T.M., Vallero, D.A., Eds.; Elsevier: Bonn, Germany, 2019; pp. 477–487. [Google Scholar]
- Cocchiara, C.; Dorneanu, S.-A.; Inguanta, R.; Sunseri, C.; Ilea, P. Dismantling and electrochemical copper recovery from Waste Printed Circuit Boards in H2SO4–CuSO4–NaCl solutions. J. Clean. Prod. 2019, 230, 170–179. [Google Scholar] [CrossRef]
- Zeng, X.; Mathews, J.A.; Li, J. Urban mining of e-waste is becoming more cost-effective than virgin mining. Environ. Sci. Technol. 2018, 52, 4835–4841. [Google Scholar] [CrossRef]
- D’Almeida, F.S.; de Carvalho, R.B.; dos Santos, F.S.; de Souza, R.F.M. On the hibernating electronic waste in Rio de Janeiro higher education community: An assessment of population behavior analysis and economic potential. Sustainability 2021, 13, 9181. [Google Scholar] [CrossRef]
- Bernardes, A.; Bohlinger, I.; Rodriguez, D.; Milbrandt, H.; Wuth, W. Recycling of printed circuit boards by melting with oxidising/reducing top blowing process. In Proceedings of the Extraction and Processing Division Symposium, TMS Annual Meeting, Orlando, FL, USA, 9–13 February 1997; Volume 126, pp. 363–375. [Google Scholar]
- Hadi, P.; Gao, P.; Barford, J.; McKay, G. Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent. J. Hazard. Mater. 2013, 252–253, 166–170. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Li, B.; Pan, D.; Wu, Y.; Zuo, T. Recovery of waste printed circuit boards through pyrometallurgical processing: A review. Resour. Conserv. Recycl. 2017, 126, 209–218. [Google Scholar] [CrossRef]
- Vučinić, A.A.; Bedeković, G.; Šarc, R.; Premur, V. Determining metal content in waste printed circuit boards and their electronic components. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 590–602. [Google Scholar] [CrossRef] [Green Version]
- Urey, H.; Holmstrom, S.; Yalcinkaya, A.D. Electromagnetically actuated FR4 scanners. IEEE Photonics Technol. Lett. 2007, 20, 30–32. [Google Scholar] [CrossRef]
- Rao, M.D.; Singh, K.K.; Morrison, C.A.; Love, J.B. Challenges and opportunities in the recovery of gold from electronic waste. RSC Adv. 2020, 10, 4300–4309. [Google Scholar] [CrossRef] [Green Version]
- Quan, C.; Li, A.; Gao, N.; Dan, Z. Characterization of products recycling from PCB waste pyrolysis. J. Anal. Appl. Pyrolysis 2010, 89, 102–106. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Y.; Wu, Y.; Guo, F. Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resour. Conserv. Recycl. 2020, 157, 104787. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, X.; Zhao, N.; Wang, W.; Du, J.; Ruan, J.; Xu, Z. Bromine removal from resin particles of crushed waste printed circuit boards by vacuum low-temperature heating. J. Clean. Prod. 2020, 262, 121390. [Google Scholar] [CrossRef]
- Baniasadi, M.; Graves, J.; Ray, D.A.; De Silva, A.L.; Renshaw, D.; Farnaud, S. Closed-loop recycling of copper from waste printed circuit boards using bioleaching and electrowinning processes. Waste Biomass Valoriz. 2021, 12, 3125–3136. [Google Scholar] [CrossRef]
- Charitopoulou, M.A.; Kalogiannis, K.G.; Lappas, A.A.; Achilias, D.S. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. Environ. Sci. Pollut. Res. 2020, 1–24. [Google Scholar] [CrossRef]
- Debnath, B.; Chowdhury, R.; Ghosh, S.K. Sustainability of metal recovery from E-waste. Front. Environ. Sci. Eng. 2018, 12, 2. [Google Scholar] [CrossRef]
- Li, J.; Lu, H.; Guo, J.; Xu, Z.; Zhou, Y. Recycle technology for recovering resources and products from waste printed circuit boards. Environ. Sci. Technol. 2007, 41, 1995–2000. [Google Scholar] [CrossRef]
- Priya, A.; Hait, S. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ. Sci. Pollut. Res. 2017, 24, 6989–7008. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, G.; Jadhao, P.R.; Pant, K.; Nigam, K. Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: Challenges & opportunities—A review. J. Environ. Chem. Eng. 2018, 6, 1288–1304. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Chen, A.; Davuljigari, C.B.; Zheng, X.; Kim, S.; Dietrich, K.N.; Ho, S.-M.; Reponen, T.; Huo, X. Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. Reprod. Toxicol. 2018, 75, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Ogunseitan, O.A.; Tang, Y. Systematic review of pregnancy and neonatal health outcomes associated with exposure to e-waste disposal. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2424–2448. [Google Scholar] [CrossRef]
- Soler, A.; Conesa, J.A.; Iñiguez-Cantos, M.E.; Ortuño, N. Pollutant formation in the pyrolysis and combustion of materials combining biomass and e-waste. Sci. Total Environ. 2018, 622–623, 1258–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.-Y.; Zhou, J.-F.; Wu, C.-C.; Bao, L.-J.; Shi, L.; Zeng, E.Y. Characteristics of polybrominated diphenyl ethers released from thermal treatment and open burning of E-Waste. Environ. Sci. Technol. 2018, 52, 4650–4657. [Google Scholar] [CrossRef]
- Hong, W.-J.; Jia, H.; Ding, Y.; Li, W.-L.; Li, Y.-F. Polychlorinated biphenyls (PCBs) and halogenated flame retardants (HFRs) in multi-matrices from an electronic waste (e-waste) recycling site in Northern China. J. Mater. Cycles Waste Manag. 2018, 20, 80–90. [Google Scholar] [CrossRef]
- Chakraborty, P.; Selvaraj, S.; Nakamura, M.; Prithiviraj, B.; Cincinelli, A.; Bang, J.J. PCBs and PCDD/Fs in soil from informal e-waste recycling sites and open dumpsites in India: Levels, congener profiles and health risk assessment. Sci. Total Environ. 2018, 621, 930–938. [Google Scholar] [CrossRef]
- Li, H.; La Guardia, M.; Liu, H.; Hale, R.C.; Mainor, T.M.; Harvey, E.; Sheng, G.; Fu, J.; Peng, P. Brominated and organophosphate flame retardants along a sediment transect encompassing the Guiyu, China e-waste recycling zone. Sci. Total Environ. 2019, 646, 58–67. [Google Scholar] [CrossRef]
- Tange, L.; Drohmann, D. Waste electrical and electronic equipment plastics with brominated flame retardants—from legislation to separate treatment—Thermal processes. Polym. Degrad. Stab. 2005, 88, 35–40. [Google Scholar] [CrossRef]
- Abdelbasir, S.M.; Hassan, S.S.M.; Kamel, A.H.; El-Nasr, R.S. Status of electronic waste recycling techniques: A review. Environ. Sci. Pollut. Res. 2018, 25, 16533–16547. [Google Scholar] [CrossRef]
- Veit, H.M. Reciclagem de Cobre de Sucatas de Placas de Circuito Impresso. Doctoral Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2005. [Google Scholar]
- Hense, P.; Reh, K.; Franke, M.; Aigner, J.; Hornung, A.; Contin, A. Pyrolysis of waste electrical and electronic equipment (WEEE) for recovering metals and energy: Previous achievements and current approaches. Environ. Eng. Manag. J. 2015, 14, 1637–1647. [Google Scholar] [CrossRef]
- Chandrasekaran, S.R.; Avasarala, S.; Murali, D.; Rajagopalan, N.; Sharma, B.K. Materials and energy recovery from E-Waste Plastics. ACS Sustain. Chem. Eng. 2018, 6, 4594–4602. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Castro, F.; Prasad, S.; Rtimi, S. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: A review on progress, challenges, and perspectives. Environ. Sci. Pollut. Res. 2020, 27, 36052–36074. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Du, N.; Lin, X.; Li, C.; Lai, J.; Li, Z. Experimental study on the heat transfer characteristics of waste printed circuit boards pyrolysis. Sci. Total Environ. 2018, 633, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Qin, F.G.; Yang, X.; Jiang, R. Study on low-temperature pyrolysis of large-size printed circuit boards. J. Anal. Appl. Pyrolysis 2014, 105, 151–156. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, S.; Liu, B.; Zheng, H.; Chang, C.-C.; Ekberg, C. Recovery of precious metals from electronic waste and spent catalysts: A review. Resour. Conserv. Recycl. 2019, 141, 284–298. [Google Scholar] [CrossRef]
- Wang, R.; Xu, Z. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review. Waste Manag. 2014, 34, 1455–1469. [Google Scholar] [CrossRef]
- Gurgul, A.; Szczepaniak, W.; Zabłocka-Malicka, M. Incineration and pyrolysis vs. steam gasification of electronic waste. Sci. Total Environ. 2018, 624, 1119–1124. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, K.-H.; Deep, A.; Szulejko, J.; Vellingiri, K.; Kumar, S.; Kwon, E.E.; Yun, S.-T. Recovery of nanomaterials from battery and electronic wastes: A new paradigm of environmental waste management. Renew. Sustain. Energy Rev. 2018, 82, 3694–3704. [Google Scholar] [CrossRef]
- Xavier, L.H.; Giese, E.C.; Duthie, A.C.R.; Lins, F.A.F. Sustainability and the circular economy: A theoretical approach focused on e-waste urban mining. Resour. Policy 2019, 101467. [Google Scholar] [CrossRef]
- Barnwal, A.; Dhawan, N. Recycling of discarded mobile printed circuit boards for extraction of gold and copper. Sustain. Mater. Technol. 2020, 25, e00164. [Google Scholar] [CrossRef]
- Neto, J.F.O.; Silva, M.M.; Santos, S.M. A mini-review of e-waste management in Brazil: Perspectives and challenges. Clean Soil Air Water 2019, 47, 1–10. [Google Scholar] [CrossRef]
- Abbondanza, M.; Souza, R. Estimating the generation of household e-waste in municipalities using primary data from surveys: A case study of Sao Jose dos Campos, Brazil. Waste Manag. 2019, 85, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Ottoni, M.; Dias, P.; Xavier, L.H. A circular approach to the e-waste valorization through urban mining in Rio de Janeiro, Brazil. J. Clean. Prod. 2020, 261, 120990. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Boscov, M.E.; Günther, W.M. Domestic flow of e-waste in São Paulo, Brazil: Characterization to support public policies. Waste Manag. 2020, 102, 474–485. [Google Scholar] [CrossRef]
- Nithya, R.; Sivasankari, C.; Thirunavukkarasu, A. Electronic waste generation, regulation and metal recovery: A review. Environ. Chem. Lett. 2021, 19, 1347–1368. [Google Scholar] [CrossRef]
- Adrian, C.S.; Drisse, M.B.; Cheng, Y.; Devia, L.; Deubzer, O. The Global E-Waste Monitor 2020; UNU-United Nations University: Geneva, Switzerland, 2020; ISBN 9789280891140. [Google Scholar]
- Ghosh, S.K.; Debnath, B.; Baidya, R.; De, D.; Li, J.; Ghosh, S.K.; Zheng, L.; Awasthi, A.K.; Liubarskaia, M.; Ogola, J.S.; et al. Waste electrical and electronic equipment management and Basel Convention compliance in Brazil, Russia, India, China and South Africa (BRICS) nations. Waste Manag. Res. 2016, 34, 693–707. [Google Scholar] [CrossRef]
- Dias, P.; Machado, A.; Huda, N.; Bernardes, A.M. Waste electric and electronic equipment (WEEE) management: A study on the Brazilian recycling routes. J. Clean. Prod. 2018, 174, 7–16. [Google Scholar] [CrossRef]
- Evangelopoulos, P.; Kantarelis, E.; Yang, W. Investigation of the thermal decomposition of printed circuit boards (PCBs) via thermogravimetric analysis (TGA) and analytical pyrolysis (Py–GC/MS). J. Anal. Appl. Pyrolysis 2015, 115, 337–343. [Google Scholar] [CrossRef]
Temperature above Sample in the Furnace (°C) | Mass Loss in a Compressed-Air Atmosphere (wt.%) | Mass Loss in an Ultrapure Argon Atmosphere (wt.%) |
---|---|---|
300 | 31.5 | 28.5 |
400 | 32.0 | 30.1 |
Sieve Opening (mm) | Retained Mass (g) | Retained Mass (wt.%) |
---|---|---|
4.75 | 30.67 | 80.71 |
2.80 | 0.77 | 2.03 |
1.40 | 0.67 | 1.76 |
0.71 | 4.20 | 11.05 |
0.50 | 0.75 | 1.97 |
0.21 | 0.41 | 1.08 |
0.18 | 0.29 | 0.76 |
Bottom | 0.24 | 0.63 |
Total | 38.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.S.S.; Hacha, R.R.; d’Almeida, F.S.; Almeida, C.A.; Moura, F.J.; Brocchi, E.A.; Souza, R.F.M. Electronic Waste Low-Temperature Processing: An Alternative Thermochemical Pretreatment to Improve Component Separation. Materials 2021, 14, 6228. https://doi.org/10.3390/ma14206228
Oliveira JSS, Hacha RR, d’Almeida FS, Almeida CA, Moura FJ, Brocchi EA, Souza RFM. Electronic Waste Low-Temperature Processing: An Alternative Thermochemical Pretreatment to Improve Component Separation. Materials. 2021; 14(20):6228. https://doi.org/10.3390/ma14206228
Chicago/Turabian StyleOliveira, Juliana S. S., Ronald R. Hacha, Felipe S. d’Almeida, Caroline A. Almeida, Francisco J. Moura, Eduardo A. Brocchi, and Rodrigo F. M. Souza. 2021. "Electronic Waste Low-Temperature Processing: An Alternative Thermochemical Pretreatment to Improve Component Separation" Materials 14, no. 20: 6228. https://doi.org/10.3390/ma14206228
APA StyleOliveira, J. S. S., Hacha, R. R., d’Almeida, F. S., Almeida, C. A., Moura, F. J., Brocchi, E. A., & Souza, R. F. M. (2021). Electronic Waste Low-Temperature Processing: An Alternative Thermochemical Pretreatment to Improve Component Separation. Materials, 14(20), 6228. https://doi.org/10.3390/ma14206228