The Designation Degree of Tool Wear after Machining of the Surface Layer of Duplex Stainless Steel
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results of Experimental Investigation
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
SEM | Scanning Electron Microscope |
EDS | spectrometer analyzer |
DSS | duplex stainless steel |
LSC | length of spiral cutting, (m) |
VB | flank wear, (mm) |
KB | rake face wear, (mm) |
Dm | diameter of the workpiece, (mm) |
lm | length of the cutting materials, (mm) |
f | feed rate, (mm/rev) |
ap | depth of cut, (mm) |
vc | cutting speed, (m/min) |
References
- Armas, A.; Moreuil, S.D. Duplex Stainless Steels; ISTE Ltd.: London, UK; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Burakowski, T.; Wierzchoń, T. Surface Engineering of Metals: Principles, Equipment, Technologies. In Materials Science and Technology; CRC Press LLC.: London, UK; New York, NY, USA; Washington, DC, USA, 1999. [Google Scholar]
- Charles, J. Duplex stainless steels, a review after DSS’07 held in Grado. Rev. Metall. 2008, 105, 155–171. [Google Scholar] [CrossRef]
- Gamarra, J.R.; Diniz, A.E. Taper turning of super duplex stainless steel: Tool life, tool wear and workpiece surface roughness. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 39. [Google Scholar] [CrossRef]
- Królczyk, G.M.; Niesłony, P.; Legutko, S. Determination of tool life and research wear during duplex stainless steel turning. Arch. Civ. Mech. Eng. 2015, 15, 347–354. [Google Scholar] [CrossRef]
- Królczyk, G.M.; Niesłony, P.; Legutko, S.; Hloch, S.; Samardzic, I. Investigation of selected surface integrity features of duplex stainless steel (DSS) after turning. Metalurgija 2015, 54, 91–94. Available online: https://hrcak.srce.hr/126702 (accessed on 29 September 2021). [CrossRef]
- Nowacki, J. Duplex Stainless Steel and Its Weldability; WNT: Warsaw, Poland, 2009. (In Polish) [Google Scholar]
- Paro, J.; Hanninen, H.; Kauppinen, V. Tool wear and machinability of HIPed P/M and conventional cast duplex stainless steels. Wear 2001, 249, 279–284. [Google Scholar] [CrossRef]
- Paro, J.; Hanninen, H.; Kauppinen, V. Tool wear and machinability of X5 CrMnN 18 18 stainless steels. J. Mater. Process. Technol. 2001, 119, 14–20. Available online: https://www.sciencedirect.com/science/article/pii/S0924013601008779 (accessed on 27 September 2021). [CrossRef]
- Ran, Q.; Li, J.; Xu, Y.; Xiao, X.; Yu, H.; Jiang, L. Novel Cu-bearing economic al 21Cr duplex stainless steels. Mater. Des. 2013, 46, 758–765. [Google Scholar] [CrossRef]
- Starosta, R.; Dyl, T. Surface Engineering; Gdynia Maritime University: Gdynia, Poland, 2008. (In Polish) [Google Scholar]
- Stradomski, G. The Analysis of AISI A3 Type Ferritic—Austenitic Cast Steel Crystallization Mechanism. Arch. Foundry Eng. 2017, 17, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Stradomski, G. The Impact of the Morphology of the Sigma Phase on Shape Properties of Steel and Cast Steel Duplex; Czestochowa University of Technology: Czestochowa, Poland, 2016. (In Polish) [Google Scholar]
- Tools for Metal Cutting, Turning Tools, Turning Inserts and Grades for Stainless Steel; CoroTurn®107 Grade 2025; Sandvik Coromant. 2021. Available online: http://www.sandvik.coromant.com/en-us/products/pages/tools.aspx (accessed on 11 September 2021).
- Dyl, T.; Starosta, R. Finishing of Nickel Matrix Composite Coatings. Preprints 2019, 2019110374. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, X.; Gao, W.; Yan, B.; Chen, T. Study on the Design and Cutting Performance of a Revolving Cycloid Milling Cutter. Appl. Sci. 2019, 9, 2915. [Google Scholar] [CrossRef] [Green Version]
- Dzierwa, A. Influence of surface preparation on surface topography and tribological behaviours. Arch. Civ. Mech. Eng. 2017, 17, 502–510. [Google Scholar] [CrossRef]
- Dzierwa, A.; Markopoulos, A.P. Influence of Ball-Burnishing Process on Surface Topography Parameters and Tribological Properties of Hardened Steel. Machines 2019, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Khanna, N.; Airao, J.; Gupta, M.K.; Song, Q.; Liu, Z.; Mia, M.; Maruda, R.; Królczyk, G.M. Optimization of Power Consumption Associated with Surface Roughness in Ultrasonic Assisted Turning of Nimonic-90 Using Hybrid Particle Swarm-Simplex Method. Materials 2019, 12, 3418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, V.F.C.; Silva, F.J.G.; Lopes, H.; Casais, R.C.B.; Baptista, A.; Pinto, G.; Alexandre, R. Wear Behavior and Machining Performance of TiAlSiN-Coated Tools Obtained by dc MS and HiPIMS: A Comparative Study. Materials 2021, 14, 5122. [Google Scholar] [CrossRef] [PubMed]
- Sarıkaya, M.; Gupta, M.K.; Tomaz, I.; Pimenov, D.; Kuntoğlu, M.; Khanna, N.; Yıldırım, Ç.V.; Królczyk, G.M. A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP J. Manuf. Sci. Technol. 2021, 35, 624–658. [Google Scholar] [CrossRef]
- Wojciechowski, S.; Królczyk, G.M.; Maruda, R.W. Advances in Hard–to–Cut Materials: Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity. Materials 2020, 13, 612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subhash, N.; Sambedana, S.; Raj, P.N.; Jagadeesha, T. Experimental Study on Tool Wear and Optimization of Process Parameters Using ANN-GA in Turning of Super-Duplex Stainless Steel Under Dry and Wet Conditions. In Advances in Manufacturing Technology. Lecture Notes in Mechanical Engineering; Hiremath, S., Shanmugam, N., Bapu, B., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Parsi, P.K.; Kotha, R.S.; Routhu, T.; Pandey, S.; Dwivedy, M. Machinability evaluation of coated carbide inserts in turning of super-duplex stainless steel. SN Appl. Sci. 2020, 2, 1933. [Google Scholar] [CrossRef]
- Cardoso, L.G.; Madeira, D.S.; Ricomini, T.E.P.A.; Miranda, R.A.; Brito, T.G.; Paiva, E.J. Optimization of machining parameters using response surface methodology with desirability function in turning duplex stainless steel UNS S32760. Int. J. Adv. Manuf. Technol. 2021, 117, 1633–1644. [Google Scholar] [CrossRef]
- Rajaguru, J.; Arunachalam, N. A comprehensive investigation on the effect of flood and MQL coolant on the machinability and stress corrosion cracking of super duplex stainless steel. J. Mater. Process. Technol. 2020, 276, 116417. [Google Scholar] [CrossRef]
- Anand, R.; Raina, A.; Haq, M.I.U.; Mir, M.J.; Gulzar, O.; Wani, M.F. Synergism of TiO2 and Graphene as Nano-Additives in Bio-Based Cutting Fluid—An Experimental Investigation. Tribol. Trans. 2021, 64, 350–366. [Google Scholar] [CrossRef]
C | Cr | Ni | Mo | Mn | Si | N | S | P |
[%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] |
24.0 | 6.0 | 3.0 | 0.24 | |||||
0.03 | 26.0 | 8.0 | 5.0 | 1.2 | 0.8 | 0.32 | 0.020 | 0.035 |
Rp0.2 | Rm min. | Rm max. | A5 min. | HV max. | E | ρ | λ | cw |
[MPa] | [MPa] | [MPa] | [%] | [-] | [GPa] | [kg/m3] | [J/m·s·K] | [J/kg·K] |
550 | 795 | 1000 | 15 | 310 | 200 | 7800 | 14.2 | 460 |
No Cutting Insert | Insert Shape | Insert Type | Insert Grade | Nose Radius [mm] | Flank Angle [°] | Rake Angle [°] |
---|---|---|---|---|---|---|
CC1 | CC09T3 | CCMT09T308-MM | 2025 | 0.8 | 7 | 7 |
CC2 | CCMT09T308-UM | 6 | ||||
CC3 | CCMT09T304-UM | 0.4 |
No | No | Insert | f | vc | VB | KB | Rz | Ra | KRa |
---|---|---|---|---|---|---|---|---|---|
Inserts | Samples | Type | [mm/rev] | [m/min] | [mm] | [mm] | [μm] | [μm] | [-] |
CC1 | M-08-100 | CCMT09T308-MM | 0.2 | 100 | 0.242 | 0.121 | 9.21 | 1.91 | 1.71 |
M-08-70 | 70 | 0.194 | 0.098 | 8.43 | 1.65 | 2.14 | |||
M-08-50 | 50 | 0.292 | 0.147 | 11.95 | 2.31 | 1.43 | |||
CC2 | U-08-100 | CCMT09T308-UM | 0.2 | 100 | 0.112 | 0.056 | 7.58 | 1.52 | 2.16 |
U-08-70 | 70 | 0.097 | 0.048 | 7.48 | 1.55 | 2.13 | |||
U-08-50 | 50 | 0.141 | 0.071 | 7.97 | 1.63 | 2.02 | |||
CC3 | U-04-70-2 | CCMT09T304-UM | 0.2 | 70 | 0.064 | 0.032 | 13.86 | 3.03 | 1.09 |
U-04-70-1 | 0.1 | 70 | 0.036 | 0.018 | 5.35 | 1.05 | 3.21 |
C | Cr | Ni | Mo | Mn | Si | N | S | P |
---|---|---|---|---|---|---|---|---|
[%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] |
0.03 | 23.4 | 5.8 | 2.8 | 1.0 | 0.6 | 0.2 | 0.02 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyl, T. The Designation Degree of Tool Wear after Machining of the Surface Layer of Duplex Stainless Steel. Materials 2021, 14, 6425. https://doi.org/10.3390/ma14216425
Dyl T. The Designation Degree of Tool Wear after Machining of the Surface Layer of Duplex Stainless Steel. Materials. 2021; 14(21):6425. https://doi.org/10.3390/ma14216425
Chicago/Turabian StyleDyl, Tomasz. 2021. "The Designation Degree of Tool Wear after Machining of the Surface Layer of Duplex Stainless Steel" Materials 14, no. 21: 6425. https://doi.org/10.3390/ma14216425
APA StyleDyl, T. (2021). The Designation Degree of Tool Wear after Machining of the Surface Layer of Duplex Stainless Steel. Materials, 14(21), 6425. https://doi.org/10.3390/ma14216425