Comfort Evaluation of Wearable Functional Textiles
Abstract
:1. Introduction
- A term related to the roles, values, and societal standing is the so-called physiological comfort [3];
- A state of harmony between the wearer and the surrounding environment [4]; and
- Balanced thermal regulation of the body—thermal comfort or a combination of physiological, psychological, and mental wellbeing of the human being [5].
2. Comfort Assessment of Wearable Electronics
3. Comfort Assessment of Functional Textiles
3.1. Subjective Evaluation Systems
3.2. Objective Evaluation Systems
- The review was made based on a multilevel concept. That means the work was performed using only a wear trail base; however, there are a lot of methods for handle assessment such as subjective assessment by hand, objective assessment by instruments and so on;
- The review was only about thermophysiological comfort and sensorial comfort was not evaluated in detail and it was a very short paragraph for each section; and
- The authors concluded that combined human and instrumental data cannot provide sufficient information about the comfort of clothing. They claimed that material properties such as yarn property, fiber property, and finishing property may provide full information about the comfort of functional clothing. However, the study did not show details about studying such properties.
4. Intelligence Systems/Soft Computing Systems in Clothing Comfort Evaluation
5. Future Perspectives
- There are few smart/functional fabrics on the market [97];
- There are no specific protocols or standards for the development and manufacturing of smart/functional clothing [98];
- The key factor for the quality of the product in terms of comfort is missing;
- The sensory evaluation of smart/functional clothing is currently investigated using methods developed for conventional fabric; and
- There are no standards for the comfort evaluation of smart/functional clothing.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rossi, R. Interactions between protection and thermal comfort. In Textiles for Protection; Sr, A., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2005; pp. 233–253. [Google Scholar]
- Gonca, Ö.; Kayseri, N.; Nilgün, Ö.; Gamze, S. Sensorial Comfort of Textile Materials. In Woven Fabrics; Jeon, H.-Y., Ed.; IntechOpen: Shanghai, China, 2012; pp. 235–267. [Google Scholar]
- Kamalha, E.; Zeng, Y.; Mwasiagi, J.I.; Kyatuheire, S. The comfort dimension; a review of perception in clothing. Sens. Stud. 2013, 28, 423–444. [Google Scholar] [CrossRef]
- Slater, K. The Assessment of Comfort. J. Text. Inst. 1986, 77, 157–171. [Google Scholar] [CrossRef]
- Guowen, S. Improving Comfort in Clothing; Woodhead Publishing Ltd.: Oxford, UK, 2011; pp. 3–57. [Google Scholar]
- Gwosdow, A.R.; Stevens, J.C.; Berglund, L.G.; Foundation, J.B.P.; Stolwijk, J.A.J. Skin Friction and Fabric Sensations in Neutral and Warm Environments. Text. Res. J. 1986, 56, 574–580. [Google Scholar] [CrossRef]
- Lee, J.; Nam, Y.; Cui, M.H.; Choi, K.M.; Choi, Y.L. Fit Evaluation of 3D Virtual Garment. In Usability and Internationalization HCI and Culture UI-HCII 2007 Lecture Notes in Computer Science, 4559th ed.; Aykin, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 550–558. [Google Scholar]
- Lindqvist, R. On the relationship between the shear forces in human skin and the grain direction of woven fabric direction of woven fabric. Int. J. Fash. Des. Technol. Educ. 2016, 9, 1–9. [Google Scholar]
- Gong, Y.; Mei, S. Stretch elasticity and garment pressure of shaping-underwear fabric Stretch elasticity and garment pressure of shaping-underwear fabric. Mater. Sci. Eng. 2019, 684, 012010. [Google Scholar]
- Taylor, P.; Mak, C.M.; Yuen, C.W.M.; Ku, S.K.; Kan, C.W. Objective evaluation of the Tencel fabric after fibrillation Objective evaluation of the Tencel fabric after fibrillation. J. Text. Inst. 2006, 97, 223–230. [Google Scholar]
- Shi, Q.; Sun, J.; Hou, C.; Li, Y.; Zhang, Q.; Wang, H. Advanced Functional Fiber and Smart Textile. Adv. Fiber Mater. 2019, 1, 3–31. [Google Scholar] [CrossRef] [Green Version]
- Koncar, V.; Cochrane, C.; Kelly, F.M.; Soulat, D.; Legrand, X. Conductive polymers for smart textile applications. J. Ind. Text. 2018, 48, 612–642. [Google Scholar]
- Tao, X. Smart technology for textiles and clothing: Introduction and overview. In Smart Fibres, Fabrics and Clothing; Tao, X., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2001; pp. 1–6. [Google Scholar]
- Koncar, V. Introduction to smart textiles and their applications. In Smart Textiles and Their Applications; Koncar, V., Ed.; Woodhead Publishing Ltd.: Amsterdam, The Netherlands, 2016; pp. 1–8. [Google Scholar]
- Kirstein, T. The future of smart-textiles development: New enabling technologies, commercialization and market trends. In Multidisciplinary Know-How for Smart-Textiles Developers; Woodhead Publishing Limited: Oxford, UK, 2013; pp. 1–25. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sungmee, P.; Sundaresan, J. Smart Textiles: Wearable Electronic Systems. MRS Bull. 2003, 28, 585–591. [Google Scholar]
- Kunigunde, C.; Christoph, Z.; Thomas, K.; Niko, M.; Gerhard, T. Woven Electronic Fibers with Sensing and Display Functions for Smart Textiles. Adv. Mater. 2010, 22, 5178–5182. [Google Scholar]
- Hao, D.; Xu, B.; Cai, Z. Polypyrrole coated knitted fabric for robust wearable sensor and heater. J. Mater. Sci. 2018, 29, 9128–9226. [Google Scholar]
- Tadesse, M.; Loghin, C.; Chen, Y.; Wang, L.; Catalin, D.; Nierstrasz, V. Effect of liquid immersion of PEDOT: PSS-coated polyester fabric on surface resistance and wettability. Smart Mater. Struct. 2018, 26, 065016. [Google Scholar] [CrossRef]
- Nilsson, O.Ã. Thermal comfort evaluation with virtual manikin methods. Build Environ. 2007, 42, 4000–4005. [Google Scholar] [CrossRef]
- Das, A.; Alagirusamy, R. Improving tactile comfort in fabrics and clothing. In Improving Comfort in Clothing; Song, G., Ed.; Elsevier Masson SAS: Oxford, UK, 2011; pp. 216–244. [Google Scholar]
- Bartels, V. Physiological comfort of sportswear. In Textiles in Sport; Shishoo, R., Ed.; Woodhead Publishing Ltd.: Boca Raton, FL, USA, 2005; pp. 177–203. [Google Scholar]
- Ozguney, A.T.; Taşkin, C.; Ünal, P.G.; Özerdem, A. Handle Properties of the Woven Fabrics Made of Compact Yarns. Tekst Ve Konfeksiyon 2009, 19, 108–113. [Google Scholar]
- Robinson, K.J.; Chambers, E.; Gatewood, B.M. Influence of Pattern Design and Fabric Type on the Hand Characteristics of Pigment Prints. Text. Res. J. 1997, 67, 837–845. [Google Scholar] [CrossRef]
- Agarwal, G.; Koehl, L.; Perwuelz, A.; Lee, K.S. Interaction of textile parameters, wash-ageing and use of fabric softener during the laundry with mechanical properties of the Knitted fabrics and correlation with textile hand. I. Interaction of Textile parameters with Laundry Process. Fibers Polym. 2011, 12, 670–678. [Google Scholar]
- Zouhaier, R.; Mohamed, H.; Ayda, B.; Najeh, M.; Sadok, R. Surface Roughness Evaluation of Treated Woven Fabric by Using a Textile Surface Tester. Res. J. Text. Appar. 2013, 17, 51–60. [Google Scholar] [CrossRef]
- Kan, C.-W.; Lam, Y.-L. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment. Materials 2013, 6, 314–333. [Google Scholar]
- Lam, Y.L.; Kan, C.W.; Yuen, C.W.; Au, C.H. Low stress mechanical properties of plasma-treated cotton fabric subjected to titanium dioxide coating. Text. Res. J. 2011, 81, 1008–1013. [Google Scholar]
- Pan, N.; Yen, K.; Zhao, S.; Yang, S. Approach to the Objective Evaluation. Text. Res. J. 1977, 58, 438–444. [Google Scholar] [CrossRef]
- Postle, R.; Mahar, T. Measuring and Interpreting Low-Stress Fabric Mechanical and Surface Properties. Text. Res. J. 1989, 59, 721–733. [Google Scholar] [CrossRef]
- Kawabata, S. The standardization and analysis of hand evaluation: The hand evaluation and standardization committee. In Effect of Mechanical and Physical Properties on Fabric Hand; Behery, H.M., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2005; pp. 389–440. [Google Scholar]
- Bishop, C.; Buckley, J.D.; Esterman, A.E.; Arnold, J.B. The running shoe comfort assessment tool (RUN-CAT): Development and evaluation of a new multi- item assessment tool for evaluating the comfort of running footwear. J. Sports Sci. 2020, 38, 2100–2107. [Google Scholar] [CrossRef]
- Akbar-khanzadeh, F.; Bisesi, M.S. Comfort of personal protective equipment. Appl. Ergon. 1995, 26, 195–198. [Google Scholar] [CrossRef]
- James, F.; Chris, B. A Tool to Assess the Comfort of Wearable Computers. J. Hum. Factors Ergon. Soc. 2005, 47, 77–91. [Google Scholar]
- Malik, M.; Handford, E.; Staniford, E.; Gambhir, A.K.; Kay, P.R. Comfort assessment of personal protection systems during total joint arthroplasty using novel multidimensional evaluation tool. R. Coll. Surg. Engl. 2006, 88, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Mcalearney, A.S.; Schweikhart, S.B.; Medow, M.A. Doctors experience with handheld computers in clinical practice: Qualitative study. BMJ 2005, 328, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Pearson, E.J.M. Comfort and its measurement. Disabil. Rehabil. Assist. Technol. 2009, 4, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Dunne, L.E.; Profita, H.; Zeagler, C.; Clawson, J.; Gilliland, S.; Do, E.Y.-L.; Budd, J. The Social Comfort of Wearable Technology and Gestural Interaction. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Machines and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4159–4162. [Google Scholar]
- Van Langenhove, L. Smart Textiles for Medicine and Healthcare; Woodhead Publishing Limited: Cambridge, UK, 2007; pp. 1–150. [Google Scholar]
- Narbonneau, F.; D’angelo, L.T.; Witt, J.; Paquet, B.; Kinet, D.; Kreber, K.; Logier, R. FBG-based smart textiles for continuous monitoring of respiratory movements for healthcare applications. In Proceedings of the IEEE E-Health Networking Applications and Services, Lyon, France, 1–3 July 2010; pp. 1–6. [Google Scholar]
- Ferraro, V. Smart Textiles and Wearable Technologies for Sportswear: A Design Approach. In Proceedings of the 2nd International Electronic Conference on Sensors and Applications, Online. 15–30 November 2015; pp. 1–6. [Google Scholar]
- Bulgun, E.Y. Smart Textiles for Soldier of the Future. Def. Sci. J. 2005, 55, 195–205. [Google Scholar]
- Gorgutsa, S.; Bachus, K.; Larochelle, S. Washable hydrophobic smart textiles and multi-material fibers for wireless communication. Smart Mater. Struct. 2016, 25, 115027. [Google Scholar] [CrossRef]
- Langereis, G.R.; Bouwstra, S.; Chen, W. Sensors, actuators and computing systems for smart textiles for protection. In Smart Textiles for Protection; Chapman, R.A., Ed.; Woodhead Publishing Limited: Oxford, UK, 2013; pp. 190–213. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Harpa, R.; Chen, Y.; Wang, L.; Nierstrasz, V.; Loghin, C. Assessing the comfort of functional fabrics for smart clothing using subjective evaluation. J. Ind. Text. 2018, 48, 1310–1326. [Google Scholar] [CrossRef]
- McIntyre, I.D.P. Textile Terms and Definitions, 10th ed.; The Textile Institute: Manchester, UK, 1995; pp. 1–112. [Google Scholar]
- Hoffman, R.M.; Beste, L.F. Some Relations of Fiber to Fabric Hand. Text. Res. J. 2015, 21(2), 66–77. [Google Scholar] [CrossRef]
- Vi, A.Y.S. Sensory evaluation methods for tactile properties of fabrics. J. Sens. Stud. 2006, 22, 1–16. [Google Scholar]
- Kandzhikova, G.D.; Germanova-krasteva, D.S. Subjective evaluation of terry fabrics handle. J. Text. Inst. 2016, 107, 355–363. [Google Scholar] [CrossRef]
- Pense, A.M.; Guilabert, C.; Bueno, M.A.; Sahnoun, M.; Renner, M. Sensory evaluation of the touch of a great number of fabrics. Food Qual. Prefer. 2006, 17, 482–488. [Google Scholar] [CrossRef]
- Taylor, P.; Barker, J.; Black, C. Ballistic vests for police officers: Using clothing comfort theory to analyze personal protective clothing. Int. J. Fash Des. Technol. Educ. 2009, 2, 59–69. [Google Scholar]
- Raheel, M.; Liu, J. Empirical Model for Fabric Hand. Text. Res. J. 2015, 61, 79–82. [Google Scholar] [CrossRef]
- Dijksterhuis, G. Multivariate data analysis in sensory and consumer science: An overview of developments. Trends Food Sci. Technol. 1995, 6, 206–211. [Google Scholar] [CrossRef]
- Winakor, G.; Kim, J.; Wolins, L. Fabric Hand: Tactile Sensory Assessment. Text. Prog. 1980, 50, 601–610. [Google Scholar] [CrossRef]
- Crina, B.; Blaga, M.; Luminita, V.; Mishra, R. Comfort properties of functional weft knitted spacer fabrics. Tekst Ve Konfeksiyon 2013, 23, 220–227. [Google Scholar]
- Namligöz, E.S.; Bahtiyari, M.İ.; Körlü, A.E.; Çoban, S. Evaluation of Finishing Processes for Linen Fabrics Using the Kawabata Evaluation System. J. Test. Eval. 2008, 36, 384–391. [Google Scholar]
- Deng, Y.; Wang, S.; Wang, S. Study on Antibacterial and Comfort Performances of Cotton Fabric Finished by Chitosan-silver for Intimate Apparel. Fibers Polym. 2016, 17, 1384–1390. [Google Scholar] [CrossRef]
- Haji Musa, A.; Malengier, B.; Vasile, S.; Van Langenhove, L. Practical Considerations of the FTT Device for Fabric Comfort Evaluation. J. Fash. Technol. Text. Eng. 2018, 1–4. [Google Scholar]
- Tokmak, O. Investigation of the Mechanics and Performance of Woven Fabrics Using Objective Evaluation Techniques. Part I: The Relationship Between FAST, KES-F and Cusick’s Drape-Meter Parameters. Fibres Text. East Eur. 2010, 18, 55–59. [Google Scholar]
- Paek, S.L. Evaluation of the Hand of Certain Flame-Retardant Fabrics. Text. Res. J. 1975, 773, 704–711. [Google Scholar] [CrossRef]
- Kawabatra, S. The Standardization and Analysis of Hand Evaluation; Textile Machinery Society of Japan: Osaka, Japan, 1980. [Google Scholar]
- Tzanov, T.Z.; Betcheva, R.; Hardalov, I. Quality Control of Silicone Softener Application. Text. Res. J. 1998, 68, 749–755. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Nagy, L.; Nierstrasz, V.; Loghin, C.; Chen, Y.; Wang, L. Low-Stress Mechanical Property Study of Various Functional Fabrics for Tactile Property Evaluation. Materials 2018, 11, 2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.O.; Slaten, B.L. Objective Evaluation of Fabric Hand Part I: Relationships of Fabric Hand by the Extraction Method and Related Physical and Surface Properties and FAST techniques less suitable for industrial applications. Text. Res. J. 1999, 69, 59–67. [Google Scholar] [CrossRef]
- Cardello, A.V.; Winterhalter, C.; Schutz, H.G. Predicting the handle and comfort of military clothing fabrics from sensory and instrumental data: Development and application of new psychophysical methods. Text. Res. J. 2003, 73, 221–237. [Google Scholar] [CrossRef]
- Zeng, X.; Ruan, D.; Koehl, L. Intelligent sensory evaluation: Concepts, implementations, and applications. Math Comput Simul. 2008, 77, 443–452. [Google Scholar] [CrossRef]
- Yoo, S.; Barker, R.L. Textile Research Journal. Text. Res. J. 2005, 75, 523–530. [Google Scholar] [CrossRef]
- Barker, R.L. Multilevel Approach to Evaluating the Comfort of Functional Clothing. J. Fiber Bioeng. Inform. 2008, 1, 173–174. [Google Scholar]
- Onal, L.; Yildirim, M. Comfort properties of functional three-dimensional knitted spacer fabrics for home-textile applications. Text. Res. J. 2012, 82, 1751–1764. [Google Scholar] [CrossRef]
- Chung, H.C.G. Thermal properties and physiological responses of vapor-permeable water-repellent fabrics treated with microcapsule-containing PCMs. Text. Res. J. 2004, 74, 571–575. [Google Scholar] [CrossRef]
- Onofrei, E.; Rocha, A.; Catarino, A. Investigating the effect of moisture on the thermal comfort properties of functional elastic fabrics. J. Ind. Text. 2012, 42, 34–51. [Google Scholar] [CrossRef]
- Nawaz, N.; Troynikov, O.; Watson, C. Evaluation of surface characteristics of fabrics suitable for skin layer of firefighters’ protective clothing. Phys. Procedia 2011, 22, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Shaid, A.; Furgusson, M.; Wang, L. Thermophysiological Comfort Analysis of Aerogel Nanoparticle Incorporated Fabric for Fire Fighter’s Protective Clothing. Chem. Mater. Eng. 2014, 2, 37–43. [Google Scholar] [CrossRef]
- Sette, S.; Van Langenhove, L. An Overview of Soft Computing in Textiles an Overview of Soft Computing in Textiles. J. Text. Inst. 2009, 94, 103–109. [Google Scholar] [CrossRef]
- Sztandera, L.M.; Cardello, A.V.; Winterhalter, C.; Schutz, H. Identification of the most significant comfort factors for textiles from processing mechanical, handfeel, fabric construction, and perceived tactile comfort data. Text. Res. J. 2013, 83, 34–43. [Google Scholar] [CrossRef]
- Zadeh, L.A. Information and control. Fuzzy Sets. 1965, 8, 338–353. [Google Scholar]
- Zimmerman, H.-J. Using fuzzy sets in operational research. Eur. J. Oper. Res. 1983, 13, 201–216. [Google Scholar] [CrossRef]
- Mamdani, E. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 1977, 26, 1182–1191. [Google Scholar] [CrossRef]
- Suparta, W.; Alhasa, K.M. Modeling of Tropospheric Delays Using ANFIS. In SpringerBriefs in Meteorology; Springer Nature: Basingstoke, UK, 2016; pp. 1–18. [Google Scholar] [CrossRef]
- Wong, A.S.W.; Li, Y.; Yeung, P.K.W. Predicting Clothing Sensory Comfort with Artificial Intelligence Hybrid Models. Text. Res. J. 2004, 74, 13–19. [Google Scholar]
- Luo, X.; Hou, W.; Li, Y.; Wang, Z. A fuzzy neural network model for predicting clothing thermal comfort. Comput. Math. Appl. 2007, 53, 1840–1846. [Google Scholar] [CrossRef]
- Zeng, X.; Koehl, L. Representation of the Subjective Evaluation of the Fabric Hand Using Fuzzy Techniques. Int. J. Intell. Syst. 2003, 18, 355–366. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, X.; Happiette, M.; Bruniaux, P.; Ng, R.; Yu, W. Optimisation of garment design using fuzzy logic and sensory evaluation techniques. Eng. Appl. Artif. Intell. 2009, 22, 272–282. [Google Scholar] [CrossRef]
- Lu, J.; Zhu, Y.; Zeng, X.; Koehl, L.; Ma, J.; Zhang, G. A linguistic multi-criteria group decision support system for fabric hand evaluation. Fuzzy Optim. Decis. Mak. 2009, 8, 395–413. [Google Scholar] [CrossRef]
- Ju, J.; Ryu, H. A Study on Subjective Assessment of Knit Fabric by ANFIS. Fibers Polym. 2006, 7, 203–212. [Google Scholar] [CrossRef]
- Jeguirim, S.E.; Babay, A.; Sahnoun, M.; Cheikhrouhou, M.; Schacher, L.; Adolphe, D. The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics. J. Intell. Manuf. 2011, 22, 873–884. [Google Scholar] [CrossRef]
- Zeng, X.; Koehl, L.; Sanoun, M.; Bueno, M.A.; Renner, M. Integration of Human Knowledge and Measured Data for Optimization of Fabric. Int. J. Gen. Syst. 2004, 33, 243–258. [Google Scholar] [CrossRef]
- Xue, Z.; Zeng, X.; Koehl, L. To Multisensory Studies of Textile Products. In Artificial Intelligence for Fashion Industry in the Big Data Era; Zeng, S.T., Ed.; Springer: Singapore, 2018; pp. 1–4. [Google Scholar]
- Yu, Y.; Hui, C.; Choi, T.; Au, R. Intelligent Fabric Hand Prediction System with Fuzzy Neural Network. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 619–629. [Google Scholar] [CrossRef]
- Park, S.; Hwang, Y.; Kang, B. Applying Fuzzy Logic and Neural Networks to Total Hand Evaluation of Knitted Fabrics. Text. Res. J. 2000, 70, 675–681. [Google Scholar] [CrossRef]
- Ruan, D.; Zeng, X. Intelligent Sensory Evaluation: Methodologies and Applications; Springer: Berlin, Germany, 2004; pp. 1–10. [Google Scholar]
- Jang, J.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Jeguirim, S.E.G.; Adolphe, D.C.; Sahnoun, M.; Douib, A.B.; Schacher, L.M.; Cheikhrouhou, M. Intelligent Techniques for Modeling the Relationships between Sensory Attributes and Instrumental Measurements of Knitted Fabrics. J. Eng. Fiber Fabr. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, M.G.; Chen, Y.; Wang, L.; Nierstrasz, V.; Loghin, C. Tactile Comfort Prediction of Functional Fabrics from Instrumental Data Using Intelligence Systems. Fibers Polym. 2019, 20, 199–209. [Google Scholar]
- Tadesse, M.G.; Loghin, E.; Pislaru, M.; Wang, L.; Chen, Y.; Nierstrasz, V.; Loghin, C. Prediction of the tactile comfort of fabrics from functional finishing parameters using fuzzy logic and artificial neural network models. Text. Res. J. 2019, 89, 4083–4094. [Google Scholar] [CrossRef]
- Cherenack, K.; Van Pieterson, L. Smart textiles: Challenges and opportunities Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012, 112, 091301. [Google Scholar] [CrossRef] [Green Version]
- Decaens, J.; Vermeersch, O. Specific testing for smart textiles. In Advanced Characterization and Testing of Textiles; Paricia Dolez, V.I., Ed.; Woodhead Publishing Ltd.: Boulevard, UK, 2018; pp. 351–374. [Google Scholar]
- Anne, S.; Lieva, V.L.; Philippe, G.; Denis, D. A roadmap on smart textiles. Text. Prog. 2010, 42, 99–180. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadesse, M.G.; Loghin, C.; Dulgheriu, I.; Loghin, E. Comfort Evaluation of Wearable Functional Textiles. Materials 2021, 14, 6466. https://doi.org/10.3390/ma14216466
Tadesse MG, Loghin C, Dulgheriu I, Loghin E. Comfort Evaluation of Wearable Functional Textiles. Materials. 2021; 14(21):6466. https://doi.org/10.3390/ma14216466
Chicago/Turabian StyleTadesse, Melkie Getnet, Carmen Loghin, Ionuț Dulgheriu, and Emil Loghin. 2021. "Comfort Evaluation of Wearable Functional Textiles" Materials 14, no. 21: 6466. https://doi.org/10.3390/ma14216466
APA StyleTadesse, M. G., Loghin, C., Dulgheriu, I., & Loghin, E. (2021). Comfort Evaluation of Wearable Functional Textiles. Materials, 14(21), 6466. https://doi.org/10.3390/ma14216466