The Hydrogenation Impact on Electronic Properties of p-Diamond/n-Si Heterojunctions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HF CVD | hot filament chemical vapor deposition |
J-V/T | current voltage characteristics versus temperature |
TE | thermionic emission |
RT | room temperature |
GB | grain boundary |
grain boundary’s barrier height | |
SEM | scanning electron microscopy |
FWHW | full width at half maximum |
References
- Koizumi, S.; Kamo, M.; Sato, Y.; Ozaki, H.; Inuzuka, T. Growth and characterization of phosphorous doped 111 homoepitaxial diamond thin films. Appl. Phys. Lett. 1997, 71, 1065–1067. [Google Scholar] [CrossRef]
- Kato, H.; Yamasaki, S.; Okushi, H. n-type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl. Phys. Lett. 2005, 86, 222111. [Google Scholar] [CrossRef]
- Umezawa, H.; Matsumoto, T.; Shikata, S. Diamond Metal–Semiconductor Field-Effect Transistor With Breakdown Voltage Over 1.5 kV. IEEE Electron. Device Lett. 2014, 35, 1112–1114. [Google Scholar] [CrossRef]
- Kitatani, K.; Umezawa, H.; Tsugawa, K.; Ueyama, K.; Ishikura, T.; Yamashita, S.; Kawarada, H. MOSFETs on polished surfaces of polycrystalline diamond. Diamond Relat. Mater. 1999, 8, 1831–1833. [Google Scholar] [CrossRef]
- Jackman, R.B.; Looi, H.J.; Pang, L.Y.S.; Whitfield, M.D.; Foord, J.S. High-performance devices from surface-conducting thin-film diamond. Carbon 1999, 37, 817–822. [Google Scholar] [CrossRef]
- Zkria, A.; Shaban, M.; Abubakr, E.; Yoshitake, T. Impedance spectroscopy analysis of n-type (nitrogen-doped) ultrananocrystalline diamond/p-type Si heterojunction diodes. Physica Scripta 2020, 95, 095803. [Google Scholar] [CrossRef]
- Zkria, A.; Gima, H.; Yoshitake, T. Application of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films for ultraviolet detection. Appl. Phys. A 2017, 123, 167. [Google Scholar] [CrossRef]
- Borst, T.H.; Strobel, S.; Weis, O. High-temperature diamond p-n junction: B-doped homoepitaxial layer on N-doped substrate. Appl. Phys. Lett. 1995, 67, 2651–2653. [Google Scholar] [CrossRef]
- Weima, J.; von Borany, J.; Meusinger, K.; Horstmann, J.; Fahrner, W. A comparative study of the I–V characteristics of diodes fabricated on as-grown and thermochemically polished CVD diamond films. Diamond Relat. Mater. 2003, 12, 1307–1314. [Google Scholar] [CrossRef]
- Mendes, J.C.; Gomes, H.L.; Trippe, S.C.; Mukherjee, D.; Pereira, L. Small signal analysis of MPCVD diamond Schottky diodes. Diam. Relat. Mater. 2019, 93, 131–138. [Google Scholar] [CrossRef]
- Łoś, S.; Paprocki, K.; Fabisiak, K.; Szybowicz, M. The influence of the space charge on The Ohm’s law conservation in CVD diamond layers. Carbon 2019, 143, 413–418. [Google Scholar] [CrossRef]
- Alcantar-Pena, J.J.; Obaldia, E.; Tirado, P.; Arellano-Jimenez, M.J.; Ortega Aguilar, J.E.; Veyan, J.F.; Yacaman, M.J.; Koudriavtsev, Y.; Auciello, O. Polycrystalline diamond films with tailored micro/nanostructure/doping for new large area film-based diamond electronics. Diam. Relat. Mater. 2019, 91, 261–271. [Google Scholar] [CrossRef]
- Mosińska, L.; Popielarski, P.; Fabisiak, K.; Dychalska, A. Effects of hydrogen termination of CVD diamond layers. Opt. Mater. 2020, 101, 109676. [Google Scholar] [CrossRef]
- Tsugawa, K.; Umezawa, H.; Kawarada, H. Characterization of diamond surface-channel metal-semiconductor field-effect transistor with device simulation. Jpn. J. Appl. Phys. 2001, 40, 3101. [Google Scholar] [CrossRef]
- Grot, S.; Gildenblat, G.S.; Hatfield, C.; Wronski, C.; Badzian, A.; Badzian, T.; Messier, R. The effect of surface treatment on the electrical properties of metal contacts to boron-doped homoepitaxial diamond film. IEEE Electron. Device Lett. 1990, 11, 100–102. [Google Scholar] [CrossRef]
- Kawarada, H. Hydrogen-terminated diamond surfaces and interfaces. Surf. Sci. Rep. 1996, 26, 205–259. [Google Scholar] [CrossRef]
- Kawarada, H.; Aoki, M.; Sasaki, H.; Tsugawa, K. Characterization of hydrogen-terminated CVD diamond surfaces and their contact properties. Diamond Relat. Mater. 1994, 3, 961–965. [Google Scholar] [CrossRef]
- Łoś, D.; Paprocki, K.; Szybowicz, M.; Fabisiak, K. The n–Si/p–CVD Diamond Heterojunction. Materials 2020, 13, 3530. [Google Scholar] [CrossRef] [PubMed]
- Łoś, S.; Fabisiak, K.; Paprocki, K.; Szybowicz, M.; Dychalska, A. The Undoped Polycrystalline Diamond Film–Electrical Transport Properties. Sensors 2021, 21, 6113. [Google Scholar] [CrossRef]
- Cheung, S.; Cheung, N. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 1986, 49, 85–87. [Google Scholar] [CrossRef]
- Norde, H. A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 1979, 50, 5052–5053. [Google Scholar] [CrossRef]
- Herchen, H.; Cappelli, M.A. First-order Raman spectrum of diamond at high temperatures. Phys. Rev. B 1991, 43, 11740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabisiak, K.; Łoś, S.; Paprocki, K.; Szybowicz, M.; Winiecki, J.; Dychalska, A. Orientation Dependence of Cathodoluminescence and Photoluminescence Spectroscopy of Defects in Chemical-Vapor-Deposited Diamond Microcrysta. Materials 2020, 13, 5446. [Google Scholar] [CrossRef] [PubMed]
- Paprocki, K.; Fabisiak, K.; Łoś, S.; Winiecki, J.; Malinowski, P.; Fabisiak, R.; Franków, W. Morphological, cathodoluminescence and thermoluminescence studies of defects in diamond films grown by HF CVD technique. Opt. Mater. 2020, 99, 109506. [Google Scholar] [CrossRef]
- Knight, D.S.; White, W.B. Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 1989, 4, 385–393. [Google Scholar] [CrossRef]
- Bachmann, P.K.; Wiechert, D.U. Optical characterization of diamond. Diam. Relat. Mater. 1992, 1, 422–433. [Google Scholar] [CrossRef]
- Von Kaenel, Y.; Stiegler, J.; Michler, J.; Blank, E. Stress distribution in heteroepitaxial chemical vapor deposited diamond films. J. Appl. Phys. 1997, 81, 1726. [Google Scholar] [CrossRef]
- Paprocki, K.; Dittmar-Wituski, A.; Trzciński, M.; Szybowicz, M.; Fabisiak, K.; Dychalska, A. The comparative studies of HF CVD diamond films by Raman and XPS spectroscopies. Opt. Mater. 2019, 95, 109251. [Google Scholar] [CrossRef]
- Casiraghi, C.; Piazza, F.; Ferrari, C.; Grambole, D.; Robertson, J. Bonding in hydrogenated diamond-like carbon by Raman spectroscopy. Diam. Relat. Mater. 2005, 14, 1098–1102. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Gomes, H.L.; Stallinga, P.; Pereira, L.; Pereira, E. Electrical characterization of CVD diamond-n+ silicon junctions. Diam. Rel. Mat. 2001, 10, 858–862. [Google Scholar] [CrossRef]
- Madaleno, J.C.; Pereira, L. The modulation of electrical carrier transport in metal-MPCVD diamond due to the microcrystalline inhomogeneous barriers. Dia. Rel. Mat. 2005, 14, 584–588. [Google Scholar] [CrossRef]
- Sönmezoğlu, S. Current transport mechanism of n-TiO2/p-ZnO heterojunction diode. Appl. Phys. Express 2011, 4, 104104. [Google Scholar] [CrossRef]
- Sittimart, P.; Nopparuchikun, A.; Promros, N. Computation of Heterojunction Parameters at Low Temperatures in Heterojunctions Comprised of n-Type β-FeSiO2 Thin Films and p-Type Si(111) Substrates Grown by Radio Frequency Magnetron Sputtering. Adv. Mater. Sci. Eng. 2017, 2017, 6590606. [Google Scholar] [CrossRef] [Green Version]
- Caglar, M.; Yakuphanoglu, F. Fabrication and electrical characterization of flower-like CdO/p-Si heterojunction diode. J. Phys. D Appl. Phys. 2009, 42, 045102. [Google Scholar] [CrossRef]
- Farag, A.; Yahia, I.; Wojtowicz, T.; Karczewski, G. Influence of temperature and illumination on the electrical properties of p-ZnTe/n-CdTe heterojunction grown by molecular beam epitaxy. J. Phys. D Appl. Phys. 2010, 43, 215102. [Google Scholar] [CrossRef]
- Kocyigit, A.; Yılmaz, M.; Aydoğan, Ş.; İncekara, Ü. The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices. J. Alloys Compd. 2019, 790, 388–396. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.H.; Park, E.; Park, B.G. Reduction of Current Crowding in InGaN-based Blue Light-Emitting Diodes by Modifying Metal Contact Geometry. J. Semicond. Tech. Sci. 2014, 14, 588–593. [Google Scholar] [CrossRef]
- Malyutenko, K.; Bolgov, S.S.; Podoltsev, A.D. Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes. Appl. Phys. Lett. 2010, 97, 251110. [Google Scholar] [CrossRef]
- Rhoderick, E.H.; Williams, R.H. Metal-Semiconductor Contacts; Clarendon Press: Oxfordm, UK; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Çınar, K.; Yıldırım, N.; Coşkun, C.; Turut, A. Temperature dependence of current-voltage characteristics in highly doped Ag/p-GaN/In Schottky diodes. J. Appl. Phys. 2009, 106, 073717. [Google Scholar] [CrossRef]
- Maier, F.; Riedel, M.; Mantel, B.; Ristein, J.; Ley, L. Origin of Surface Conductivity in Diamond. Phys. Rev. Lett. 2000, 85, 3472–3475. [Google Scholar] [CrossRef] [PubMed]
- Sque, S.J.; Jones, R.; Briddon, P.R. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys. Rev. B 2006, 73, 085313. [Google Scholar] [CrossRef]
- Cui, J.; Ristein, J.; Ley, L. Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 1998, 81, 429. [Google Scholar] [CrossRef]
- Jia, Y.Q.; Qin, G.G. Effects of hydrogen on Al/p-Si Schottky barrier diodes. Appl. Phys. Lett. 1990, 56, 641. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Sato, K.; Yasumura, Y. Study of forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 1985, 58, 3655–3657. [Google Scholar] [CrossRef]
- Seto, J.Y. The electrical properties of polycrystalline silicon films. J. Appl. Phys. 1975, 46, 5247–5254. [Google Scholar] [CrossRef]
- Chiu, F.C. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, 2014, 578168. [Google Scholar] [CrossRef] [Green Version]
- Salvatori, S.; Vincenzoni, R.; Rossi, M.C.; Galluzzi, F.; Pinzari, F.; Mattei, G.; Cappelli, E.; Ascarelli, P. Electrical and photoelectrical characterization of diamond-on-silicon structures. Appl. Surf. Sci. 1996, 102, 125–129. [Google Scholar] [CrossRef]
- Trucchi, D.M.; Cappelli, T.E.; Conte, G.; Mattei, G.; Gramaccioni, C.; Ascarelli, P. The influence of grain-boundaries on the electronic performance of CVD diamond films. Diam. Relat. Mater. 2005, 14, 575–579. [Google Scholar] [CrossRef]
- Hayashi, K.; Yamanaka, S.; Watanabe, H.; Sekiguchi, T.; Okushi, H.; Kajimura, K. Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J. Appl. Phys. 1997, 81, 744–753. [Google Scholar] [CrossRef]
- Williams, O.A.; Jackman, R.B. Surface conductivity on hydrogen terminated diamond. Semicond. Sci. Technol. 2003, 18, S34–S40. [Google Scholar] [CrossRef]
- Fabisiak, K.; Kowalska, M.; Szybowicz, M.; Paprocki, K.; Popielarski, P.; Wrzyszczynski, A.; Mosinska, L.; Zhusupkalieva, G.K. The Undoped CVD Diamond Electrode: The Effect of Surface Pretreatment on its Electrochemical Properties. Adv. Eng. Mater. 2013, 15, 935–940. [Google Scholar] [CrossRef]
- Chen, W.; Qi, D.; Gao, X.; Wee, A.T.S. Surface transfer doping of semiconductors. Prog. Surf. Sci. 2009, 84, 279–321. [Google Scholar] [CrossRef]
Films | T | T | p | Gas Flow Rate | |
---|---|---|---|---|---|
[K] | [K] | [hPa] | [sccm] | [vol%] | |
PDF35 | 2450 ± 50 | 1000 ± 50 | 20 ± 2 | 100 | 3 |
PDF25 | 2450 ± 50 | 1000 ± 50 | 80 ± 2 | 100 | 3 |
Films | Peak Position | FWHM | C | H |
---|---|---|---|---|
[cm] | [cm] | [%] | [at.%] | |
PDF35 | 1331.8 | 7.1 | 98 | 17.5 |
PDF25 | 1331.6 | 9.9 | 93 | 14.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łoś, S.; Fabisiak, K.; Paprocki, K.; Szybowicz, M.; Dychalska, A.; Spychaj-Fabisiak, E.; Franków, W. The Hydrogenation Impact on Electronic Properties of p-Diamond/n-Si Heterojunctions. Materials 2021, 14, 6615. https://doi.org/10.3390/ma14216615
Łoś S, Fabisiak K, Paprocki K, Szybowicz M, Dychalska A, Spychaj-Fabisiak E, Franków W. The Hydrogenation Impact on Electronic Properties of p-Diamond/n-Si Heterojunctions. Materials. 2021; 14(21):6615. https://doi.org/10.3390/ma14216615
Chicago/Turabian StyleŁoś, Szymon, Kazimierz Fabisiak, Kazimierz Paprocki, Mirosław Szybowicz, Anna Dychalska, Ewa Spychaj-Fabisiak, and Wojciech Franków. 2021. "The Hydrogenation Impact on Electronic Properties of p-Diamond/n-Si Heterojunctions" Materials 14, no. 21: 6615. https://doi.org/10.3390/ma14216615
APA StyleŁoś, S., Fabisiak, K., Paprocki, K., Szybowicz, M., Dychalska, A., Spychaj-Fabisiak, E., & Franków, W. (2021). The Hydrogenation Impact on Electronic Properties of p-Diamond/n-Si Heterojunctions. Materials, 14(21), 6615. https://doi.org/10.3390/ma14216615