Prediction of Deflection of Reinforced Concrete Beams Considering Shear Effect
Abstract
:1. Introduction
2. Review of Previous Study
2.1. Effect of Shear on Deflection of Flexure-Critical RC Beams
2.2. Experimental Program
3. Evaluation of Shear Effect on Deflection of RC Beams
3.1. Elastic Analysis
3.2. Experimental Approach
4. Prediction of Deflection of Flexure-Critical RC Beams
4.1. ACI Provisions
4.2. Calculation Method Considering Shear Effect on Deflection of RC Beams
4.3. Verification of Proposed Method
5. Conclusions
- The shear deflection of RC beams calculated from the elastic bending theory underestimated the real shear deflection by up to approximately 40% as increased. This is because the crack characteristics of the RC structure were not reflected in the elastic bending theory. An analytical method that considers the effect of shear on deflection should be used to reasonably predict the deflection of RC beams;
- The ACI 318-19, which calculates the deflection using the effective moment of inertia, was found to significantly underestimate the real total deflection of RC beams. Furthermore, the tendency to underestimate increased as increased. Meanwhile, the deflection calculated using ACI 318-19 was very similar to the flexural deflection of RC beams measured from strain gauges with an average of 1.0;
- In this study, the deflection incremental coefficient considering shear effect and a method for calculating the deflection of RC beams were devised. The proposed deflection incremental coefficient was applied to the flexural deflection calculated using ACI 318-19 to evaluate the total deflection of the RC beams. By comparing the experimental and analytical results, the proposed method using the deflection incremental coefficient predicted the real total deflection of RC beams well with an average of 1.0 and a COV of 11.1%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Branson, D.E. Instantaneous and Time-Dependent Deflections on Simple and Continuous Reinforced Concrete Beams; HPR Report No. 7, Part 1; Alabama Highway Department: Alabama, USA, 1965; pp. 1–78. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Reinforced Concrete (ACI 318-71); American Concrete Institute: Farmington Hills, MI, USA, 1971; p. 78. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318RM-14); American Concrete Institute: Farmington Hills, MI, USA, 2015; p. 519. [Google Scholar]
- Bischoff, P.H. Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber-reinforced polymer bars. J. Struct. Eng. 2005, 131, 752–767. [Google Scholar] [CrossRef]
- Bischoff, P.H. Comparison of existing approaches for computing deflection of reinforced concrete. ACI Struct. J. 2020, 117, 231–240. [Google Scholar] [CrossRef]
- Scanlon, A.; Bischoff, P.H. Shrinkage restraint and loading history effects on deflections of flexural members. ACI Struct. J. 2008, 105, 498–506. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19); American Concrete Institute: Farmington Hills, MI, USA, 2019; p. 623. [Google Scholar]
- Kim, S.-W.; Han, D.-S.; Kim, K.-H. Evaluation of shear effect on deflection of RC beams. Appl. Sci. 2021, 11, 7690. [Google Scholar] [CrossRef]
- Han, D.-S. Evaluation of the Influence of Shear on Deflection of Reinforced Concrete Beams Subjected to Combined Bending and Shear. Master’s Thesis, Kongju National University, Cheonan, Korea, 2014; p. 53. [Google Scholar]
- American Society for Testing and Materials. ASTM C78/C78—16: Standard Test. Method for Flexural Strength of Concrete. Using Simple Beam with Third-Point Loading; ASTM: West Conshohocken, PA, USA, 2016; p. 4. [Google Scholar]
- Jang, I.-Y.; Park, H.-G.; Kim, Y.-G.; Kim, S.-S.; Kim, J.-H. Flexural behavior of high-strength concrete beams confined with stirrups in pure bending zone. Int. J. Concr. Struct. Mater. 2009, 3, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Mansor, A.A.; Mohammed, A.S.; Salman, W.D. Effect of longitudinal steel reinforcement ratio on deflection and ductility in reinforced concrete beams. IOP Conf. Ser. Mater. Sci. Eng. 2020, 888, 012008. [Google Scholar] [CrossRef]
- Rashie, M.A.; Mansur, M.A. Reinforced high-strength concrete beams in flexure. ACI Struct. J. 2005, 102, 462–471. [Google Scholar]
- Sin, L.H.; Huan, W.T.; Islam, M.R.; Mansu, M.A. Reinforced lightweight concrete beams in flexure. ACI Struct. J. 2011, 108, 3–12. [Google Scholar]
- Kim, S.-W.; Jeong, C.-Y.; Lee, J.-S.; Kim, K.-H. Applicability of ground granulated blast-furnace slag for precast concrete beams subjected to bending moment. J. Asian Archit. Build. Eng. 2014, 13, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-W.; Lee, Y.-J.; Lee, Y.-H.; Kim, K.-H. Flexural performance of reinforced high-strength concrete beams with EAF oxidizing slag aggregates. J. Asian Archit. Build. Eng. 2016, 15, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-W.; Lee, Y.-J.; Kim, K.-H. Flexural behavior of reinforced concrete beams with electric arc furnace slag aggregates. J. Asian Archit. Build. Eng. 2012, 11, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Ryu, D.-H.; Kim, S.-W.; Lim, J.-Y.; Lee, J.-M.; Lee, Y.-J. Experimental study on flexural behavior of RC beams with electric arc furnace oxidizing slag aggregates. J. Archit. Inst. Korea 2009, 25, 27–34. [Google Scholar]
- Lee, N.-K.; Hwang, H.-Z.; Park, H.-G. Flexural performance of activated hwangtoh concrete beam. J. Korea Concr. Inst. 2010, 22, 567–574. [Google Scholar] [CrossRef]
- Song, S.-H.; Choi, K.-S.; You, Y.-C.; Kim, K.-H.; Yun, H.-D. Flexural behavior of reinforced recycled aggregate concrete beams. J. Korea Concr. Inst. 2009, 21, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-B. A Study on the Behavior of Deflections and Cracking of Reinforced Concrete Beams for Serviceability Assessment. Ph.D. Thesis, Inha University, Incheon, Korea, 2010; p. 118. [Google Scholar]
- Lee, I.-J. Experimental Study on Short-Term Deflection of Reinforced Concrete Beams. Master’s Thesis, Sungkyunkwan University, Suwon, Korea, 2009; p. 58. [Google Scholar]
- Jung, W.-T.; Park, Y.-H.; Park, J.-S.; Kim, C.-Y. Strengthening effect of reinforced concrete beams strengthened with NSM CFRP reinforcements and various reinforcement details. J. Korea Concr. Inst. 2011, 23, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y. Flexural strengthening effect of RC Beams bonded with carbon FRP sheets. KSCE J. Civil. Environ. Eng. Res. 2001, 21, 997–1005. [Google Scholar]
- Park, R.; Paulay, T. Reinforced Concrete Structures; Wiley: New York, NY, USA, 1975; p. 769. [Google Scholar]
Specimens | a/d (d/l) | Tension Rebar (Comp.) | Shear Rebar | (kN) | (mm) | |
---|---|---|---|---|---|---|
B6-2.5a | 2.5 (0.156) | 3-D22 (2-D16) | D10@95 mm | 1.1 | 451.6 | 11.9 |
B6-2.5b | D10@70 mm | 1.4 | 446.8 | 11.5 | ||
B6-2.5c | D10@55 mm | 1.7 | 467.0 | 11.4 | ||
B6-3.0a | 3.0 (0.135) | D10@120 mm | 1.1 | 382.2 | 15.2 | |
B6-3.0b | D10@90 mm | 1.4 | 373.5 | 14.6 | ||
B6-3.0c | D10@70 mm | 1.7 | 372.3 | 14.2 | ||
B6-4.0a | 4.0 (0.106) | D10@180 mm | 1.1 | 275.1 | 19.8 | |
B6-4.0b | D10@130 mm | 1.4 | 268.7 | 20.1 | ||
B6-4.0c | D10@100 mm | 1.7 | 274.1 | 19.9 |
Specimens | Experimental Results | ACI 318-14 | ACI 318-19 | ||||||
---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | ||||||||
B6-2.5a | 11.9 | 7.6 | 1.57 | 1.55 | 1.45 | 0.99 | 1.56 | 1.46 | 1.00 |
B6-2.5b | 11.5 | 7.7 | 1.49 | 1.50 | 1.40 | 1.00 | 1.51 | 1.41 | 1.01 |
B6-2.5c | 11.4 | 8.0 | 1.43 | 1.49 | 1.39 | 1.04 | 1.49 | 1.40 | 1.05 |
B6-3.0a | 15.2 | 10.0 | 1.52 | 1.51 | 1.44 | 1.00 | 1.52 | 1.45 | 1.00 |
B6-3.0b | 14.6 | 10.0 | 1.46 | 1.45 | 1.38 | 1.00 | 1.46 | 1.39 | 1.00 |
B6-3.0c | 14.2 | 10.1 | 1.41 | 1.41 | 1.34 | 1.01 | 1.42 | 1.35 | 1.01 |
B6-4.0a | 19.8 | 14.7 | 1.35 | 1.26 | 1.22 | 0.94 | 1.27 | 1.23 | 0.94 |
B6-4.0b | 20.1 | 16.1 | 1.25 | 1.28 | 1.24 | 1.03 | 1.29 | 1.24 | 1.03 |
B6-4.0c | 19.9 | 14.9 | 1.34 | 1.27 | 1.23 | 0.95 | 1.27 | 1.23 | 0.95 |
Mean | 1.42 | 1.41 | 1.34 | 0.99 | 1.42 | 1.35 | 1.00 | ||
COV(%) | 7.0 | 8.2 | 6.9 | 3.4 | 8.2 | 6.9 | 3.4 |
Ref. | Specimens | (MPa) | b (mm) | h (mm) | (kN) | (mm) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
11 | 4B4-0.5(0) | 41.0 | 140 | 260 | 4.0 | 0.106 | 106.4 | 7.9 | 0.98 | 1.25 | 0.94 |
4B4-0.5(10) | 41.0 | 140 | 260 | 4.0 | 0.106 | 113.1 | 10.4 | 1.04 | 1.66 | 1.25 | |
4B4-0.7(10) | 41.0 | 140 | 260 | 4.0 | 0.106 | 143.8 | 10.6 | 0.97 | 1.49 | 1.12 | |
4B4-0.7(5) | 41.0 | 140 | 260 | 4.0 | 0.106 | 146.1 | 11.2 | 0.98 | 1.59 | 1.20 | |
12 | R1 | 38.2 | 200 | 300 | 2.3 | 0.149 | 111.0 | 4.7 | 1.25 | 1.42 | 0.94 |
R2 | 37.5 | 200 | 300 | 2.3 | 0.147 | 185.0 | 5.0 | 1.33 | 1.31 | 0.88 | |
R3 | 37.3 | 200 | 300 | 2.5 | 0.139 | 340.0 | 5.7 | 1.10 | 1.17 | 0.80 | |
R4 | 37.0 | 200 | 300 | 2.3 | 0.149 | 189.0 | 5.0 | 1.44 | 1.34 | 0.90 | |
R5 | 39.1 | 200 | 300 | 2.3 | 0.147 | 308.0 | 5.7 | 1.50 | 1.39 | 0.93 | |
R6 | 40.7 | 200 | 300 | 2.4 | 0.142 | 495.0 | 6.1 | 1.07 | 1.17 | 0.80 | |
13 | A211 | 42.8 | 250 | 400 | 3.4 | 0.105 | 440.5 | 15.5 | 0.94 | 1.20 | 0.91 |
14 | 1 | 33.1 | 150 | 300 | 3.8 | 0.094 | 100.3 | 15.4 | 1.04 | 1.35 | 1.07 |
2 | 52.5 | 150 | 300 | 4.1 | 0.086 | 170.3 | 17.6 | 0.99 | 1.26 | 1.03 | |
15 | BG0 | 46.7 | 200 | 350 | 4.0 | 0.103 | 222.3 | 13.1 | 0.98 | 1.36 | 1.03 |
BG30 | 58.0 | 200 | 350 | 4.0 | 0.103 | 222.2 | 12.8 | 0.97 | 1.36 | 1.03 | |
BG50 | 53.1 | 200 | 350 | 4.0 | 0.103 | 216.8 | 12.5 | 0.95 | 1.31 | 1.00 | |
BG70 | 45.2 | 200 | 350 | 4.0 | 0.103 | 241.5 | 14.1 | 1.06 | 1.46 | 1.11 | |
16 | AN24-0.3 | 32.4 | 200 | 300 | 4.0 | 0.101 | 112.3 | 12.7 | 1.03 | 1.48 | 1.13 |
AN24-0.5 | 32.4 | 200 | 300 | 4.0 | 0.101 | 168.9 | 16.2 | 1.04 | 1.73 | 1.33 | |
17 | F-AN | 31.7 | 200 | 350 | 4.0 | 0.103 | 149.2 | 12.2 | 1.01 | 1.43 | 1.09 |
9 | B6-2.5a | 26.8 | 200 | 400 | 2.5 | 0.156 | 451.6 | 11.9 | 1.01 | 1.56 | 1.03 |
B6-2.5b | 26.8 | 200 | 400 | 2.5 | 0.156 | 446.8 | 11.5 | 1.00 | 1.51 | 0.99 | |
B6-2.5c | 26.8 | 200 | 400 | 2.5 | 0.156 | 467 | 11.4 | 1.05 | 1.49 | 0.98 | |
B6-3.0a | 26.8 | 200 | 400 | 3.0 | 0.135 | 382.2 | 15.2 | 1.04 | 1.52 | 1.05 | |
B6-3.0b | 26.8 | 200 | 400 | 3.0 | 0.135 | 373.5 | 14.6 | 1.00 | 1.46 | 1.01 | |
B6-3.0c | 26.8 | 200 | 400 | 3.0 | 0.135 | 372.3 | 14.2 | 1.00 | 1.42 | 0.98 | |
B6-4.0a | 26.8 | 200 | 400 | 4.0 | 0.106 | 275.1 | 19.8 | 0.99 | 1.27 | 0.95 | |
B6-4.0b | 26.8 | 200 | 400 | 4.0 | 0.106 | 268.7 | 20.1 | 0.96 | 1.29 | 0.97 | |
B6-4.0c | 26.8 | 200 | 400 | 4.0 | 0.106 | 274.1 | 19.9 | 0.98 | 1.27 | 0.96 | |
B3-2.5a | 26.8 | 200 | 400 | 2.5 | 0.156 | 285.3 | 9.9 | 0.94 | 1.44 | 0.95 | |
B3-2.5b | 26.8 | 200 | 400 | 2.5 | 0.156 | 299.7 | 9.8 | 0.99 | 1.42 | 0.94 | |
B3-2.5c | 26.8 | 200 | 400 | 2.5 | 0.156 | 296.1 | 9.5 | 0.97 | 1.39 | 0.91 | |
18 | AN | 20.3 | 300 | 300 | 3.2 | 0.132 | 173.3 | 6.6 | 1.10 | 1.39 | 0.97 |
19 | BFO1 | 50.0 | 200 | 350 | 4.1 | 0.102 | 183.0 | 14.5 | 0.92 | 1.31 | 1.00 |
BFO2 | 50.0 | 200 | 350 | 4.1 | 0.101 | 252.0 | 14.2 | 1.00 | 1.24 | 0.95 | |
BFO3 | 41.7 | 200 | 350 | 4.1 | 0.102 | 190.0 | 13.5 | 0.96 | 1.19 | 0.91 | |
BFO4 | 41.7 | 200 | 350 | 4.1 | 0.101 | 244.0 | 14.4 | 0.97 | 1.23 | 0.94 | |
20 | B-R0.75-A0 | 37.0 | 400 | 600 | 5.1 | 0.088 | 649.1 | 27.6 | 0.88 | 1.17 | 0.95 |
BFS4-A0 | 26.8 | 400 | 600 | 5.1 | 0.088 | 581.0 | 32.6 | 0.91 | 1.51 | 1.23 | |
BFS5-A0 | 31.5 | 400 | 600 | 5.1 | 0.088 | 619.8 | 35.9 | 0.99 | 1.62 | 1.32 | |
21 | G-X13 | 28.0 | 250 | 350 | 4.5 | 0.070 | 86.3 | 21.4 | 0.95 | 1.07 | 0.96 |
G-X16 | 28.0 | 250 | 350 | 4.5 | 0.070 | 173.1 | 31.0 | 0.93 | 1.25 | 1.11 | |
G-X19 | 28.0 | 250 | 350 | 4.5 | 0.070 | 130.1 | 26.7 | 0.86 | 1.20 | 1.07 | |
G-X25 | 28.0 | 250 | 350 | 4.5 | 0.070 | 155.3 | 27.9 | 0.85 | 1.16 | 1.03 | |
G-Y13 | 28.0 | 250 | 350 | 4.8 | 0.066 | 77.2 | 21.2 | 0.91 | 0.99 | 0.91 | |
G-Y19 | 28.0 | 250 | 350 | 4.8 | 0.066 | 113.2 | 24.9 | 0.81 | 1.03 | 0.95 | |
G-Y25 | 28.0 | 250 | 350 | 4.8 | 0.066 | 142.7 | 29.8 | 0.84 | 1.14 | 1.05 | |
SN-0 | 41.1 | 250 | 350 | 7.1 | 0.070 | 123.0 | 21.8 | 0.87 | 1.14 | 1.01 | |
SN-1 | 41.1 | 250 | 350 | 4.5 | 0.070 | 187.0 | 27.6 | 0.84 | 1.11 | 0.99 | |
SN-2 | 41.1 | 250 | 350 | 3.2 | 0.070 | 269.0 | 29.0 | 0.86 | 1.09 | 0.97 | |
22 | N-10-3 | 20.6 | 200 | 300 | 3.7 | 0.113 | 47.6 | 5.8 | 1.02 | 1.06 | 0.78 |
N-13-2 | 20.6 | 200 | 300 | 3.7 | 0.113 | 63.8 | 7.6 | 1.09 | 1.25 | 0.92 | |
N-13-3 | 20.6 | 200 | 300 | 3.7 | 0.113 | 92.1 | 8.2 | 1.07 | 1.24 | 0.91 | |
N-16-2 | 20.6 | 200 | 300 | 3.7 | 0.113 | 95.1 | 9.5 | 1.09 | 1.46 | 1.08 | |
H-10-3 | 41.3 | 200 | 300 | 3.7 | 0.113 | 48.2 | 5.9 | 1.02 | 1.19 | 0.88 | |
H-13-2 | 41.3 | 200 | 300 | 3.7 | 0.113 | 65.2 | 7.7 | 1.10 | 1.37 | 1.01 | |
H-13-3 | 41.3 | 200 | 300 | 3.7 | 0.113 | 95.0 | 8.6 | 1.09 | 1.39 | 1.02 | |
H-16-2 | 41.3 | 200 | 300 | 3.7 | 0.113 | 96.5 | 8.1 | 1.09 | 1.33 | 0.98 | |
23 | Control | 31.3 | 200 | 300 | 4.0 | 0.087 | 46.7 | 12.5 | 1.10 | 1.39 | 1.13 |
24 | F0 | 22.8 | 150 | 250 | 3.5 | 0.095 | 69.4 | 9.4 | 0.88 | 1.27 | 0.99 |
Mean | 1.01 | 1.33 | 1.00 | ||||||||
COV | 12.6% | 12.2% | 11.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-W.; Kim, K.-H. Prediction of Deflection of Reinforced Concrete Beams Considering Shear Effect. Materials 2021, 14, 6684. https://doi.org/10.3390/ma14216684
Kim S-W, Kim K-H. Prediction of Deflection of Reinforced Concrete Beams Considering Shear Effect. Materials. 2021; 14(21):6684. https://doi.org/10.3390/ma14216684
Chicago/Turabian StyleKim, Sang-Woo, and Kil-Hee Kim. 2021. "Prediction of Deflection of Reinforced Concrete Beams Considering Shear Effect" Materials 14, no. 21: 6684. https://doi.org/10.3390/ma14216684
APA StyleKim, S. -W., & Kim, K. -H. (2021). Prediction of Deflection of Reinforced Concrete Beams Considering Shear Effect. Materials, 14(21), 6684. https://doi.org/10.3390/ma14216684